AN EXACT FINITE ELEMENT SCHEME OF THE BOUNDARY VALUE PROBLEM FOR AN ORDINARY DIFFERENTIAL EQUATION

Viktor Verbitskyi, Anton Loktev

Анотація


A scheme of the finite element method for solving a boundary value problem for an ordinary differential equation with piecewise constant coefficients is proposed.

The basic functions of finite-dimensional subspaces are constructed using solutions of the Dirichlet problem for a homogeneous differential equation on a finite element.

Those solutions are easy to construct if all the points of discontinuity of the equation coefficients  are contained among the grid nodes.

The finite element solution of the boundary value problem coincides with the exact solution at the nodes of the grid.


Повний текст:

PDF (English)

Посилання


Asadzadeh M. Asymptotic error expansions for the finite element method for second order elliptic problems in $R^n$ ($nge2$), I: Local interior expansions. M. Asadzadeh, A. Schatz, W. Wendland. --- SIAM J. Numer. Anal. 48 (2010) 2000--2017.

Babuska I. Superconvergence in the generalized finite element method: Techn. Rep. 0545. / I. Babuska, U. Bauerjee , Оsborn J.E. --- Austin, Texas: TICAM, Univ. Texas, 2004, http://www.ices.utexas.edu/research/reports/2005/0545.pdf.

Babuska I. Special finite element methods for a class of second order elliptic problems with rough coefficients. / I. Babuska, G. Caloz, J. Оsborn. --- SIAM J. Numer. Analys., 31(4) (1994), pp. 945-981.

Babuska I. The partition of unity finite element method. / I. Babuska, J.M. Melenk. --- Int. J. Numer. Meth. Engng., 40(4) (1997), pp. 727-758.

Babuska I. Is the pollution effect of the FEM avoidable for the Helmholtz equation considering high wave numbers? / I. Babuska, S. A. Sauter. ---SIAM J. Numer. Analys. 34(6) (1997), pp. 2392-2423.

Brandtz J.H. Superconvergence of tetrahededral quadratic finite elements. / J.H. Brandtz, M. Kriezk. --- J. Comput. Math., 23(2005) 27-36.

Cao W. Superconvergence of discontinuous Galerkin methods for two-dimensional hyperbolic equations. /W. Cao, C. Shu, Y. Yang and Z. Zhang. SIAM J. Numer.Anal., 53(4) (2015), pp. 1651-1671.

Cao W. Is 2K-conjecture valid for finite volume methods? / W. Cao, Z. Zhang, Q. Zou. SIAM J. --- Numer.Anal., 53(2) (2015), pp. 942-962.

Chen C. The highest order superconvergence for bi-$k$ degree rectangular elements at nodes -- a proof of $2k$-conjecture. / C. Chen, S. Hu. --- Math. Comp. 82(2013) 1337–1355.

Chen H. An interior estimate of superconvergence for finite element solutions for second-order elliptic problems on quasi-uniform meshes by local projections. / H. Chen, J. Wang. --- SIAM J. Numer.Anal., 41(4) (2003), pp. 1318-1338.

Douglas J. Superconvergence for Galerkin methods for the two-point boundary problem via local projections. / J. Douglas, T. Dupont. --- Numer. Math., 21 (1973), pp. 270-278.

Ewing R. E. Superconvergence of the velocity along the Gauss lines in mixed finite element methods. / R. E. Ewing, R. D. Lazarov and J. Wang. --- SIAM J. Numer. Anal., 28 (1991), pp. 1015-1029.

Huang Y. Superconvergence of quadratic finite elements on mildly structured grids. / Y. Huang, J. Xu. --- Math. Comp. (77)263 (2008) 1253-1268.

Krizek M. Superconvergence phenomenon on three-dimensional meshes. --- International Journal of Numerical Analysis and Modeling, 2(1) (2005). pp. 43-56.

Melenk J.M. The partition of unity finite element method: Basic theory and applications. / J.M. Melenk, I. Babuska. --- Comput. Meth. Appl. Mech. Engng. 139(1996), pp. 289-314.

Oden J.T. Applied Functional Analysis. Third edition. / J.T. Oden, L.F. Demkowicz. --- CRC Press, 2018.

Oganesjan L. A. An investigation of the rate of convergence of variational difference schemes for second order elliptic equations in a two-dimensional region with smooth boundary. / L. A. Oganesjanand, L. A. Ruhovec. --- Z. Vycisl. Mat. i Mat. Fiz., 9 (1969), pp. 1102-1120. (in Russian).

Panin A. A. On the problem of superconvergence of finite elements method. --- Comput. Math. Math. Phys., 48(12) (2008), pp. 2211–2216. (in Russian).

SchatzA. H. Superconvergence in finite element methods and meshes that are symmetric with respect to a point. / I. H. Sloan and L. B. Wahlbin. --- SIAM J. Numer. Anal., 33(1996), pp. 505-521.

Wang C. Superconvergence of Ritz-Galerkin finite element approximations for second order elliptic problems. --- Numer. Meth. for Partial Differential Equations, 34(3) (2018), pp. 838-856.

Zienkiewicz O. C. The superconvergence patch recovery and a posteriori error estimates, Part 2, Error estimates and adaptivity. / ,O. C. Zienkiewicz and J. Z. Zhu. --- Internat. J. Numer. Methods Engrg., 33(1992), pp. 1365-1382.




DOI: http://dx.doi.org/10.30970/vam.2020.28.10949

Посилання

  • Поки немає зовнішніх посилань.