ACCUMULATION OF MINERAL ELEMENTS IN THE LONGISSIMUS DORSI MUSCLE OF BULLS OF DIFFERENT AGES AND BREEDS

Stepan Michalchenko, Igor Korkh, Anatoliy Paliy, Nataliia Boiko, Kateryna Rodionova, Alyona Siabro, Olena Pavlichenko, Andriy Kudriashov, Natalia Palii, Tetiana Holubieva


DOI: http://dx.doi.org/10.30970/sbi.1904.858

Abstract


Background. In the context of growing demand for higher-quality food, it is imperative to determine the biological value and safety of beef based on the level of vital trace elements. There is limited knowledge about the course of their formation, which underscores the need for further in-depth research in this area.
Materials and Methods. The object of the research was samples of the Longissimus dorsi muscle of bulls of six breeds of cattle of dairy and combined productivity. The calcium content in the samples was determined by the complexometric method. The phosphorus content was determined by the colorimetric method using a photoelectric colorimeter. The content of other trace elements was determined by the standardized atomic absorption method using an AAS-30 spectrophotometer (Sagle Zeiss, Germany) at the research base of the Testing Center of the Institute of Animal Science of the NAAS, accredited by the National Accreditation Agency of Ukraine, in accordance with the requirements of DSTU EN ISO/IEC 17025:2019.
Results. The findings indicate that the age factor is associated with the accumulation of mineral elements in muscle tissue, while breed plays a key role in regulating overall mineral metabolism. Studies of the mineral composition of the Longissimus dorsi muscle of bulls at different growth stages identified 12 elements, five of which were classified as macroelements (Ca, P, Mg, K, and Na), and seven as trace elements (Cu, Co, Mn, Zn, Fe, Pb, and Cd). The concentrations of these elements varied within a fairly wide range but did not exceed the maximum permissible levels established for cattle meat. The content of such heavy metals as lead and cadmium in the meat of mature, intensively raised 21-month-old steers was significantly lower than in the veal of 3-month-old steers.
Conclusion. The results of the study indicate the absence of natural changes in the content of all trace elements during different growth periods. Only specific features of accumulation for each trace element and growth period were revealed, which does not contradict the general trend of similarity of the mineral composition of the meat of dairy and combined bulls. The content of lead and cadmium in the meat of mature, intensively raised 21-month-old steers was significantly lower than in the veal of 3-month-old steers.


Keywords


mineral elements, Longissimus dorsi muscle, beef, bulls, breed, age

Full Text:

PDF

References


Arce-Cordero, J. A., Ravelo, A., Vinyard, J. R., Monteiro, H. F., Agustinho, B. C., Sarmikasoglou, E., Bennet, S. L., & Faciola, A. P. (2021). Effects of supplemental source of magnesium and inclusion of buffer on ruminal microbial fermentation in continuous culture. Journal of Dairy Science, 104(7), 7820-7829. doi:10.3168/jds.2020-20020
CrossrefPubMedGoogle Scholar

Arthington, J. D., & Ranches, J. (2021). Trace mineral nutrition of grazing beef cattle. Animals, 11(10), 2767. doi:10.3390/ani11102767
CrossrefPubMedPMCGoogle Scholar

Barge, P., Brugiapaglia, A., Barge M. T., & Destefanis, G. (2006). A study on mineral composition of beef. In: 52nd International Congress of Meat Science and Technology (pp. 723-724). Wageningen Academic. doi:10.3920/9789086865796_332
CrossrefGoogle Scholar

Bazargani-Gilani, B., Pajohi-Alamoti, M., Bahari, A., & Sari, A. A. (2016). Heavy metals and trace elements in the livers and kidneys of slaughtered cattle, sheep and goats. Iranian Journal of Toxicology, 10(6), 7-13. doi:10.29252/arakmu.10.6.7
CrossrefGoogle Scholar

Ben Meir, Y. A., Shaani, Y., Bikel, D., Portnik, Y., Jacoby, S., Moallem, U., Miron, J., & Frank, E. (2023). Reducing dietary sodium of dairy cows fed a low-roughages diet affect intake and feed efficiency, but not yield. Animal Nutrition, 12, 1-6. doi:10.1016/j.aninu.2022.09.002
CrossrefPubMedPMCGoogle Scholar

Bhattacharyya, M. H. (2009). Cadmium osteotoxicity in experimental animals: mechanism and relationship to human exposures. Toxicology and Applied Pharmacology, 238(3), 258-265. doi:10.1016/j.taap.2009.05.015
CrossrefPubMedPMCGoogle Scholar

Cha, M., Ma, X., Liu, Y., Xu, S., Diao, Q., & Tu, Y. (2025). Effects of replacing inorganic sources of copper, manganese, and zinc with different organic forms on mineral status, immune biomarkers, and lameness of lactating cows. Animals, 15(2), 271. doi:10.3390/ani15020271
CrossrefPubMedPMCGoogle Scholar

Cheek, R. A., Kegley, E. B., Russell, J. R., Reynolds, J. L., Midkiff, K. A., Galloway, D., & Powell, J. G. (2024). Supplemental trace minerals as complexed or inorganic sources for beef cattle during the receiving period. American Society of Animal Production, 102, skae056. doi:10.1093/jas/skae056
CrossrefPubMedPMCGoogle Scholar

Constable, P. D., Grünberg, W., Staufenbiel, R., & Stämpfli, H. (2013). Clinicopathologic variables associated with hypokalemia in lactating dairy cows with abomasal displacement or volvulus. Journal of the American Veterinary Medical Association, 242(6), 826-835. doi:10.2460/javma.242.6.826
CrossrefPubMedGoogle Scholar

Constable, P. D., Hiew, M. W. H., Tinkler, S., & Townsend, J. (2014). Efficacy of oral potassium chloride administration in treating lactating dairy cows with experimentally induced hypokalemia, hypochloremia, and alkalemia. Journal of Dairy Science, 2014, 97(3), 1413-1426. doi:10.3168/jds.2013-6982
CrossrefPubMedGoogle Scholar

Dauncey, M. J., Katsumata, M., & White, P. (2004). Nutrition, hormone receptor expression and gene interactions: implications for development and disease. In: M. F. W. Pas, M. E. Evertes, & H. P. Haagsman (Eds.), Muscle development of livestock animals: physiology, genetics and meat quality (pp. 103-124). Wallingford: CABI. doi:10.1079/9780851998114.0103
CrossrefGoogle Scholar

Domaradzki, P., Florek, M., Staszowska, A., & Litwińczuk, Z. (2016). Evaluation of the Mineral Concentration in beef from Polish native cattle. Biological Trace Element Research, 171(2), 328-332. doi:10.1007/s12011-015-0549-3
CrossrefPubMedPMCGoogle Scholar

Drapal, J., Steinhauser, L., Stastny, K., & Faldyna, M. (2021). Cadmium concentration in cattle tissues in the Czech Republic. Veterinární Medicína, 66(9), 369-375. doi:110.17221/218/2020-vetmed
CrossrefPubMedPMCGoogle Scholar

Ebrahimi, M., & Taherianfard, M. (2011). The effects of heavy metals exposure on reproductive systems of cyprinid fish from Kor Rive. Iranian Journal of Fisheries Sciences, 10(1), 13-24.
Google Scholar

Feeney, K. A., Hansen, L. L., Putker, M., Olivares-Yañez, C., Day J., Eades, L. J., Larrondo, L. F., Hoyle, N. P., O'Neill J. S., & Ooijen van G. (2016). Daily magnesium fluxes regulate cellular timekeeping and energy balance. Nature, 532(7599), 375-379. doi:10.1038/nature17407
CrossrefPubMedPMCGoogle Scholar

Fernández-Villa, C., Rigueira, L., López-Alonso, M., Larrán, B., Orjales, I., Herrero-Latorre, C., Pereira, V., & Miranda, M. (2025). Identification of patterns of trace mineral deficiencies in dairy and beef cattle herds in Spain. Animals, 15(17), 2480. doi:10.3390/ani15172480
CrossrefPubMedPMCGoogle Scholar

Fulton, J. O., Blair, A. D., Underwood, K. R., Daly, R. F., Gonda, M. G., Perry, G. A., & Wright, C. L. (2023). The effect of copper and zinc sources on liver copper and zinc concentrations and performance of beef cows and suckling calves. Veterinary Sciences, 10(8), 511. doi:10.3390/vetsci10080511
CrossrefPubMedPMCGoogle Scholar

Giuffrida-Mendoza, M., Arenas de Moreno, L., Uzcátegui-Bracho, S., Rincón-Villalobos, G., & Huerta-Leidenz, N. (2007). Mineral content of longissimus dorsi thoracis from water buffalo and Zebu-influenced cattle at four comparative ages. Meat Sciences, 75(3), 487-493. doi:10.1016/j.meatsci.2006.08.011
CrossrefPubMedGoogle Scholar

Grünberg, W., Scherpenisse, P., Dobbelaar, P., Idink, M. J., & Wijnberg, I. D. (2015). The effect of transient, moderate dietary phosphorus deprivation on phosphorus metabolism, muscle content of different phosphorus-containing compounds, and muscle function in dairy cows. Journal of Dairy Science, 98(8), 5385-5400. doi:10.3168/jds.2015-9357
CrossrefPubMedGoogle Scholar

Grünberg, W. (2023). Phosphorus metabolism during transition. Veterinary Clinics of North America: Food Animal Practice, 39(2), 261-274. doi:10.1016/j.cvfa.2023.02.002
CrossrefPubMedGoogle Scholar

Hashemi, M. (2018). Heavy metal concentrations in bovine tissues (muscle, liver and kidney) and their relationship with heavy metal contents in consumed feed. Ecotoxicology and Environmental Safety, 154, 263-267. doi:10.1016/j.ecoenv.2018.02.058
CrossrefPubMedGoogle Scholar

Hussein, H. A., Müller, A-E., & Staufenbiel, R. (2022). Comparative evaluation of mineral profiles in different blood specimens of dairy cows at different production phases. Frontiers in Veterinary Science, 9, 905249. doi:10.3389/fvets.2022.905249
CrossrefPubMedPMCGoogle Scholar

Ji, H., Tan, D., Chen, Y., Cheng, Z., Zhao, J., & Lin, M. (2023). Effects of different manganese sources on nutrient digestibility, fecal bacterial community, and mineral excretion of weaning dairy calves. Frontiers in Microbiology, 14, 1163468. doi:10.3389/fmicb.2023.1163468
CrossrefPubMedPMCGoogle Scholar

Juárez, M., Lam, S., Bohrer, B. M., Dugan, M. E. R., Vahmani, P., Aalhus, J., Juárez, A., López-Campos, O., Prieto, N., & Segura, J. (2021). Enhancing the nutritional value of red meat through genetic and feeding strategies. Foods, 10(4), 872. doi:10.3390/foods10040872
CrossrefPubMedPMCGoogle Scholar

Khiaosa-Ard, R., Ottoboni, M., Verstringe, S., Gruber, T., Hartinger, T., Humer, E., Bruggeman, G., & Zebeli, Q. (2023). Magnesium in dairy cattle nutrition: a meta-analysis on magnesium absorption in dairy cattle and assessment of simple solubility tests to predict magnesium availability from supplemental sources. Journal of Dairy Science, 106(12), 8758-8773. doi:10.3168/jds.2023-23560
CrossrefPubMedGoogle Scholar

Kovács, L., Pajor, F., Bakony, M., Fébel, H., & Edwards, J. E. (2023). Prepartum magnesium butyrate supplementation of dairy cows improves colostrum yield, calving ease, fertility, early lactation performance and neonatal vitality. Animals, 13(8), 1319. doi:10.3390/ani13081319
CrossrefPubMedPMCGoogle Scholar

Litwinczuk, Z., Domaradzki, P., Florek, M., Żółkiewski, P., & Staszowska, A. (2015). Content of macro- andmicroelements in the meat of young bulls of three native breeds (Polish Red, White-Backed and PolishBlack-and-White) in comparison with Simmental and Polish Holstein-Friesian. Annals of Animal Science, 15(4), 977-985. doi:10.1515/aoas-2015-0058
CrossrefGoogle Scholar

Meng, J., Wang, Y., Cao, J., Teng, W., Wang, J., & Zhang, Y. (2024). Study on the changes of bone calcium during the fermentation of bone powders with different fermenters. Foods, 13(2), 227. doi:10.3390/foods13020227
CrossrefPubMedPMCGoogle Scholar

Mitchell, H., Pecoraro, H. L., Webb, B. T., Choi, B. J., Idamawatta, C., Mostrom, M. S., Steichen, Q. P., & Hoppe, K. (2025). Copper and manganese levels are associated with infectious abortions, stillbirths, and early neonatal deaths in upper Midwest beef cattle herds. Journal of the American Veterinary Medical Association, 263(S1), S65-S70. doi:10.2460/javma.24.12.0801
CrossrefPubMedPMCGoogle Scholar

Momot, M., Nogalski, Z., Pogorzelska-Przybyłek, P., & Sobczuk-Szul, M. (2020). Influence of genotype and slaughter age on the content of selected minerals and fatty acids in the longissimus thoracis muscle of crossbred bulls. Animals, 10(11), 1-12. doi:10.3390/ani10112004
CrossrefPubMedPMCGoogle Scholar

Neves, R. C. (2023). Relationship between calcium dynamics and inflammatory status in the transition period of dairy cows. JDS Communications, 4(3), 225-229. doi:10.3168/jdsc.2022-0348
CrossrefPubMedPMCGoogle Scholar

Oconitrillo, M., Wickramasinghe, J., Omale, S., Beitz, D., & Appuhamy, R. (2024). Effects of elevating zinc supplementation on the health and production parameters of high-producing dairy cows. Animals, 14(3), 395. doi:10.3390/ani14030395
CrossrefPubMedPMCGoogle Scholar

Özlü, H., & Atasever, M. (2018). Effects of age and breed on trace elements content in cattle muscle and edible offal. Asian Journal of Medical and Biological Research, 4(2), 157-163. doi:10.3329/ajmbr.v4i2.38250
CrossrefGoogle Scholar

Paliy, A., Naumenko, А., Paliy, A., Zolotaryova, S., Zolotarev, A., Tarasenko, L., & Nechyporenko, O. (2020). Identifying changes in the milking rubber of milking machines during testing and under industrial conditions. Eastern-European Journal of Enterprise Technologies, 5/1(107), 127-137. doi:10.15587/1729-4061.2020.212772
CrossrefGoogle Scholar

Patel, N., Bergamaschi, M., Cagnin, M., Bittante, G., & Notes, A. (2020). Exploration of the effect of farm, breed, sex and animal ondetailed mineral profile of beef and their latent explanatory factors. International Journal of Food Science and Technology, 55(3), 1046-1056. doi:10.1111/ijfs.14455
CrossrefGoogle Scholar

Pilarczyk, R. (2014a). Concentrations of toxic and nutritional essential elements in meat from different beef breeds reared under intensive production systems. Biological Trace Element Research, 158(1), 36-44. doi:10.1007/s12011-014-9913-y
CrossrefPubMedGoogle Scholar

Pilarczyk, R. (2014b). Elemental composition of muscle tissue of various beef breeds reared under intensive production systems. International Journal of Environmental Research, 8(4), 931-940.
Google Scholar

Pereira, V., Carbajales, P., López-Alonso, M., & Miranda, M. (2018). Trace element concentrations in beef cattle related to breed aptitude. Biological Trace Element Research, 186(5), 135-142. doi:10.1007/s12011-018-1276-3
CrossrefPubMedGoogle Scholar

Plöntzke, J., Berg, M., Ehrig, R., Leonhard-Marek, S., Müller, K. E., & Röblitz, S. (2022). Model-based exploration of hypokalemia in dairy cows. Scientific Reports, 12(1), 19781. doi:10.1038/s41598-022-22596-0
CrossrefPubMedPMCGoogle Scholar

Polidori, P., Pucciarelli, S., Cammertoni, N., Polzonetti, V., & Vincenzetti, S. (2017). The effects of slaughter age on carcass and meat quality of fabrianese lambs. Small Ruminant Research, 155, 12-15. doi:10.1016/j.smallrumres.2017.08.012
CrossrefGoogle Scholar

Prasad, A. S. (2012). Discovery of human zinc deficiency: 50 years later. Journal of Trace Elements in Medicine and Biology, 26(2-3), 66-69. doi:10.1016/j.jtemb.2012.04.004
CrossrefPubMedGoogle Scholar

Raths, R., Rodriguez, B., Holloway, J. W., Waite, A., Lawrence, T., van de Ligt, J. L. G., Purvis, H., Doering-Resch, H., & Casper, D. P. (2023) Comparison of growth performance and tissue cobalt concentrations in beef cattle fed inorganic and organic cobalt sources. Translational Animal Science, 7(1), txad120. doi:10.1093/tas/txad120
CrossrefPubMedPMCGoogle Scholar

Rawson, J. K., Baptiste, Q., Harned, R., & Knights, M. (2022). PSXIV-14 selenium and copper deficiency associated decline in reproductive performance in summer bred, rotationally grazed, forage fed beef cattle. Journal of Animal Science, 100(3), 228-229. doi:10.1093/jas/skac247.414
CrossrefPubMedGoogle Scholar

Reykdal, O., Rabieh, S., Steingrimsdottir, L., & Gunnlaugsdottir, H. (2011). Minerals and trace elements in Icelandic dairy products and meat. Journal of Food Composition and Analysis, 24(7), 980-986. doi:10.1016/j.jfca.2011.03.002
CrossrefGoogle Scholar

Robert, A., Cheddani, L., Ebel, A., Vilaine, E., Seidowsky, A., Massy, Z., & Essig, M. (2020). Métabolisme du sodium: une mise au point en 2019 [Sodium metabolism: an update in 2019]. Néphrologie et Thérapeutique, 16(2), 77-82. doi:10.1016/j.nephro.2019.06.004
CrossrefPubMedGoogle Scholar

Rueda García, A. M., Fracassi, P., Scherf, B. D., Hamon, M., & Iannotti, L. (2024). Unveiling the nutritional quality of terrestrial animal source foods by species and characteristics of livestock systems. Nutrients, 16(19), 3346. doi:10.3390/nu16193346
CrossrefPubMedPMCGoogle Scholar

Sickinger, M., Jörling, J., Büttner, K., Roth, J., & Wehrend, A. (2025). Association of stress and inflammatory diseases with serum ferritin and iron concentrations in neonatal calves. Animals, 15(7), 1021. doi:10.3390/ani15071021
CrossrefPubMedPMCGoogle Scholar

Silva, F. L., Oliveira-Júnior, E. S, e Silva, M. H. M., López-Alonso, M., & Pierangeli, M. A. P. (2022). Trace elements in beef cattle: a review of the scientific approach from one health perspective. Animals, 12(17), 2254. doi:10.3390/ani12172254
CrossrefPubMedPMCGoogle Scholar

Spek, J. W., Bannink, A., Gort, G., Hendriks W. H., & Dijkstra, J. (2012). Effect of sodium chloride intake on urine volume, urinary urea excretion, and milk urea concentration in lactating dairy cattle. Journal of Dairy Science, 95(12), 7288-7298. doi:10.3168/jds.2012-5688
CrossrefPubMedGoogle Scholar

Stadnik, J. (2024). Nutritional value of meat and meat products and their role in human health. Nutrients, 16(10), 1446. doi:10.3390/nu16101446
CrossrefPubMedPMCGoogle Scholar

Thirumoorthy, N., Sunder, A. S., Kumar, K. M., Kumar, M. S., Ganesh, G., & Chatterjee, M. (2011). Review of metallothionein isoforms and their role in pathophysiology. World Journal of Surgical Oncology, 9(1), 54-61. doi:10.1186/1477-7819-9-54
CrossrefPubMedPMCGoogle Scholar

Tizioto, P. C., Gromboni, C. F., de Araujo Nogueira, A. R., de Souza, M. V., de Alvarenga Mudadu, M., Tholon, P., do Nascimento Rosa, A., Tullio, R. R., Medeiros, S. R., Nassu, R. T., & de Almeida Regitano, L. C. (2014). Calcium and potassium content in beef: influences on tenderness and associations with molecular markers in Nellore cattle. Meat Science, 96(1), 436-440. doi:10.1016/j.meatsci.2013.08.001
CrossrefPubMedGoogle Scholar

Turgut, F., Kanbay, M., Metin, M. R., Uz, E., Akcay, A., & Covic, A. (2008). Magnesium supplementation helps to improve carotid intima media thickness in patients on hemodialysis. International Urology and Nephrology, 40(4), 1075-1082. doi:10.1007/s11255-008-9410-3
CrossrefPubMedGoogle Scholar

Valaitienė, V., Klementavičiūtė, J., & Stanytė, G. (2016). The influence of cattle breed on nutritional value and mineral content of meat. Veterinary Medicine and Zootechnics, 73(95), 133-137.
Google Scholar

van den Brink, L. M., Cohrs, I., Golbeck, L., Wächter, S., Dobbelaar, P., Teske, E., & Grünberg, W. (2023). Effect of dietary phosphate deprivation on red blood cell parameters of periparturient dairy cows. Animals, 13(3), 404. doi:10.3390/ani13030404
CrossrefPubMedPMCGoogle Scholar

Venäläinen, E. R., Anttila, M., & Peltonen, K. (2005). Heavy metals in tissue samples of Finnish moos, Alces alces. Bulletin of Environmental Contamination and Toxicology, 74(3), 526-536. doi:10.1007/s00128-005-0616-0
CrossrefPubMedGoogle Scholar

Wilkens, M. R., Nelson, C. D., Hernandez, L. L., & McArt, J. A. A. (2020). Symposium review: transition cow calcium homeostasis - health effects of hypocalcemia and strategies for prevention. Journal of Dairy Science, 103(3), 2909-2927. doi:10.3168/jds.2019-17268
CrossrefPubMedGoogle Scholar

Yamada, S., & Inaba, M. (2021). Potassium metabolism and management in patients with CKD. Nutrients, 13(6), 1751. doi:10.3390/nu13061751
CrossrefPubMedPMCGoogle Scholar

Yi, Y. J., & Zhang, S. H. (2012). Heavy metal (Cd, Cr, Cu, Hg, Pb, Zn) concentrations in seven fish species in relation to fish size and location along the Yangtze River. Environmental Science and Pollution Research, 19(9), 3989-3996. doi:10.1007/s1156-012-0840-1
CrossrefPubMedGoogle Scholar

Zasadowski, A., Barski, D., Markiewicz, K., Zasadowski, Z., Spodniewska, A., & Terlecka, A. (1999). Levels of cadmium contamination of domestic animals (cattle) in the region of warmia and masuria. Polish Journal of Environmental Studies, 8(6), 443-446.
Google Scholar

Zenad, W., Benatallah, A., Zaouani, M., Boudjellaba, S., Ainouz, L., Mahdi, M. H. B., & Benouadah, A. (2020). Incidence and public health risk assessment of toxic metal residues (cadmium and lead) in liver and kidney of ovine and bovine from Algeria. Bulletin of University of Agricultural Sciences and Veterinary Medicine Cluj-Napoca. Veterinary Medicine, 77(2), 17-23. doi:10.15835/buasvmcn-vm:2020.0002
CrossrefGoogle Scholar


Refbacks

  • There are currently no refbacks.


Copyright (c) 2025 Stepan Michalchenko, Igor Korkh, Anatoliy Paliy, Nataliia Boiko, Kateryna Rodionova, Alyona Siabro, Olena Pavlichenko, Andriy Kudriashov, Natalia Palii, Tetiana Holubieva

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.