ACCUMULATION OF MINERAL ELEMENTS IN THE LONGISSIMUS DORSI MUSCLE OF BULLS OF DIFFERENT AGES AND BREEDS
DOI: http://dx.doi.org/10.30970/sbi.1904.858
Abstract
Background. In the context of growing demand for higher-quality food, it is imperative to determine the biological value and safety of beef based on the level of vital trace elements. There is limited knowledge about the course of their formation, which underscores the need for further in-depth research in this area.
Materials and Methods. The object of the research was samples of the Longissimus dorsi muscle of bulls of six breeds of cattle of dairy and combined productivity. The calcium content in the samples was determined by the complexometric method. The phosphorus content was determined by the colorimetric method using a photoelectric colorimeter. The content of other trace elements was determined by the standardized atomic absorption method using an AAS-30 spectrophotometer (Sagle Zeiss, Germany) at the research base of the Testing Center of the Institute of Animal Science of the NAAS, accredited by the National Accreditation Agency of Ukraine, in accordance with the requirements of DSTU EN ISO/IEC 17025:2019.
Results. The findings indicate that the age factor is associated with the accumulation of mineral elements in muscle tissue, while breed plays a key role in regulating overall mineral metabolism. Studies of the mineral composition of the Longissimus dorsi muscle of bulls at different growth stages identified 12 elements, five of which were classified as macroelements (Ca, P, Mg, K, and Na), and seven as trace elements (Cu, Co, Mn, Zn, Fe, Pb, and Cd). The concentrations of these elements varied within a fairly wide range but did not exceed the maximum permissible levels established for cattle meat. The content of such heavy metals as lead and cadmium in the meat of mature, intensively raised 21-month-old steers was significantly lower than in the veal of 3-month-old steers.
Conclusion. The results of the study indicate the absence of natural changes in the content of all trace elements during different growth periods. Only specific features of accumulation for each trace element and growth period were revealed, which does not contradict the general trend of similarity of the mineral composition of the meat of dairy and combined bulls. The content of lead and cadmium in the meat of mature, intensively raised 21-month-old steers was significantly lower than in the veal of 3-month-old steers.
Keywords
Full Text:
PDFReferences
| Arce-Cordero, J. A., Ravelo, A., Vinyard, J. R., Monteiro, H. F., Agustinho, B. C., Sarmikasoglou, E., Bennet, S. L., & Faciola, A. P. (2021). Effects of supplemental source of magnesium and inclusion of buffer on ruminal microbial fermentation in continuous culture. Journal of Dairy Science, 104(7), 7820-7829. doi:10.3168/jds.2020-20020 Crossref ● PubMed ● Google Scholar | ||||
| ||||
| Arthington, J. D., & Ranches, J. (2021). Trace mineral nutrition of grazing beef cattle. Animals, 11(10), 2767. doi:10.3390/ani11102767 Crossref ● PubMed ● PMC ● Google Scholar | ||||
| ||||
| Barge, P., Brugiapaglia, A., Barge M. T., & Destefanis, G. (2006). A study on mineral composition of beef. In: 52nd International Congress of Meat Science and Technology (pp. 723-724). Wageningen Academic. doi:10.3920/9789086865796_332 Crossref ● Google Scholar | ||||
| ||||
| Bazargani-Gilani, B., Pajohi-Alamoti, M., Bahari, A., & Sari, A. A. (2016). Heavy metals and trace elements in the livers and kidneys of slaughtered cattle, sheep and goats. Iranian Journal of Toxicology, 10(6), 7-13. doi:10.29252/arakmu.10.6.7 Crossref ● Google Scholar | ||||
| ||||
| Ben Meir, Y. A., Shaani, Y., Bikel, D., Portnik, Y., Jacoby, S., Moallem, U., Miron, J., & Frank, E. (2023). Reducing dietary sodium of dairy cows fed a low-roughages diet affect intake and feed efficiency, but not yield. Animal Nutrition, 12, 1-6. doi:10.1016/j.aninu.2022.09.002 Crossref ● PubMed ● PMC ● Google Scholar | ||||
| ||||
| Bhattacharyya, M. H. (2009). Cadmium osteotoxicity in experimental animals: mechanism and relationship to human exposures. Toxicology and Applied Pharmacology, 238(3), 258-265. doi:10.1016/j.taap.2009.05.015 Crossref ● PubMed ● PMC ● Google Scholar | ||||
| ||||
| Cha, M., Ma, X., Liu, Y., Xu, S., Diao, Q., & Tu, Y. (2025). Effects of replacing inorganic sources of copper, manganese, and zinc with different organic forms on mineral status, immune biomarkers, and lameness of lactating cows. Animals, 15(2), 271. doi:10.3390/ani15020271 Crossref ● PubMed ● PMC ● Google Scholar | ||||
| ||||
| Cheek, R. A., Kegley, E. B., Russell, J. R., Reynolds, J. L., Midkiff, K. A., Galloway, D., & Powell, J. G. (2024). Supplemental trace minerals as complexed or inorganic sources for beef cattle during the receiving period. American Society of Animal Production, 102, skae056. doi:10.1093/jas/skae056 Crossref ● PubMed ● PMC ● Google Scholar | ||||
| ||||
| Constable, P. D., Grünberg, W., Staufenbiel, R., & Stämpfli, H. (2013). Clinicopathologic variables associated with hypokalemia in lactating dairy cows with abomasal displacement or volvulus. Journal of the American Veterinary Medical Association, 242(6), 826-835. doi:10.2460/javma.242.6.826 Crossref ● PubMed ● Google Scholar | ||||
| ||||
| Constable, P. D., Hiew, M. W. H., Tinkler, S., & Townsend, J. (2014). Efficacy of oral potassium chloride administration in treating lactating dairy cows with experimentally induced hypokalemia, hypochloremia, and alkalemia. Journal of Dairy Science, 2014, 97(3), 1413-1426. doi:10.3168/jds.2013-6982 Crossref ● PubMed ● Google Scholar | ||||
| ||||
| Dauncey, M. J., Katsumata, M., & White, P. (2004). Nutrition, hormone receptor expression and gene interactions: implications for development and disease. In: M. F. W. Pas, M. E. Evertes, & H. P. Haagsman (Eds.), Muscle development of livestock animals: physiology, genetics and meat quality (pp. 103-124). Wallingford: CABI. doi:10.1079/9780851998114.0103 Crossref ● Google Scholar | ||||
| ||||
| Domaradzki, P., Florek, M., Staszowska, A., & Litwińczuk, Z. (2016). Evaluation of the Mineral Concentration in beef from Polish native cattle. Biological Trace Element Research, 171(2), 328-332. doi:10.1007/s12011-015-0549-3 Crossref ● PubMed ● PMC ● Google Scholar | ||||
| ||||
| Drapal, J., Steinhauser, L., Stastny, K., & Faldyna, M. (2021). Cadmium concentration in cattle tissues in the Czech Republic. Veterinární Medicína, 66(9), 369-375. doi:110.17221/218/2020-vetmed Crossref ● PubMed ● PMC ● Google Scholar | ||||
| ||||
| Ebrahimi, M., & Taherianfard, M. (2011). The effects of heavy metals exposure on reproductive systems of cyprinid fish from Kor Rive. Iranian Journal of Fisheries Sciences, 10(1), 13-24. Google Scholar | ||||
| ||||
| Feeney, K. A., Hansen, L. L., Putker, M., Olivares-Yañez, C., Day J., Eades, L. J., Larrondo, L. F., Hoyle, N. P., O'Neill J. S., & Ooijen van G. (2016). Daily magnesium fluxes regulate cellular timekeeping and energy balance. Nature, 532(7599), 375-379. doi:10.1038/nature17407 Crossref ● PubMed ● PMC ● Google Scholar | ||||
| ||||
| Fernández-Villa, C., Rigueira, L., López-Alonso, M., Larrán, B., Orjales, I., Herrero-Latorre, C., Pereira, V., & Miranda, M. (2025). Identification of patterns of trace mineral deficiencies in dairy and beef cattle herds in Spain. Animals, 15(17), 2480. doi:10.3390/ani15172480 Crossref ● PubMed ● PMC ● Google Scholar | ||||
| ||||
| Fulton, J. O., Blair, A. D., Underwood, K. R., Daly, R. F., Gonda, M. G., Perry, G. A., & Wright, C. L. (2023). The effect of copper and zinc sources on liver copper and zinc concentrations and performance of beef cows and suckling calves. Veterinary Sciences, 10(8), 511. doi:10.3390/vetsci10080511 Crossref ● PubMed ● PMC ● Google Scholar | ||||
| ||||
| Giuffrida-Mendoza, M., Arenas de Moreno, L., Uzcátegui-Bracho, S., Rincón-Villalobos, G., & Huerta-Leidenz, N. (2007). Mineral content of longissimus dorsi thoracis from water buffalo and Zebu-influenced cattle at four comparative ages. Meat Sciences, 75(3), 487-493. doi:10.1016/j.meatsci.2006.08.011 Crossref ● PubMed ● Google Scholar | ||||
| ||||
| Grünberg, W., Scherpenisse, P., Dobbelaar, P., Idink, M. J., & Wijnberg, I. D. (2015). The effect of transient, moderate dietary phosphorus deprivation on phosphorus metabolism, muscle content of different phosphorus-containing compounds, and muscle function in dairy cows. Journal of Dairy Science, 98(8), 5385-5400. doi:10.3168/jds.2015-9357 Crossref ● PubMed ● Google Scholar | ||||
| ||||
| Grünberg, W. (2023). Phosphorus metabolism during transition. Veterinary Clinics of North America: Food Animal Practice, 39(2), 261-274. doi:10.1016/j.cvfa.2023.02.002 Crossref ● PubMed ● Google Scholar | ||||
| ||||
| Hashemi, M. (2018). Heavy metal concentrations in bovine tissues (muscle, liver and kidney) and their relationship with heavy metal contents in consumed feed. Ecotoxicology and Environmental Safety, 154, 263-267. doi:10.1016/j.ecoenv.2018.02.058 Crossref ● PubMed ● Google Scholar | ||||
| ||||
| Hussein, H. A., Müller, A-E., & Staufenbiel, R. (2022). Comparative evaluation of mineral profiles in different blood specimens of dairy cows at different production phases. Frontiers in Veterinary Science, 9, 905249. doi:10.3389/fvets.2022.905249 Crossref ● PubMed ● PMC ● Google Scholar | ||||
| ||||
| Ji, H., Tan, D., Chen, Y., Cheng, Z., Zhao, J., & Lin, M. (2023). Effects of different manganese sources on nutrient digestibility, fecal bacterial community, and mineral excretion of weaning dairy calves. Frontiers in Microbiology, 14, 1163468. doi:10.3389/fmicb.2023.1163468 Crossref ● PubMed ● PMC ● Google Scholar | ||||
| ||||
| Juárez, M., Lam, S., Bohrer, B. M., Dugan, M. E. R., Vahmani, P., Aalhus, J., Juárez, A., López-Campos, O., Prieto, N., & Segura, J. (2021). Enhancing the nutritional value of red meat through genetic and feeding strategies. Foods, 10(4), 872. doi:10.3390/foods10040872 Crossref ● PubMed ● PMC ● Google Scholar | ||||
| ||||
| Khiaosa-Ard, R., Ottoboni, M., Verstringe, S., Gruber, T., Hartinger, T., Humer, E., Bruggeman, G., & Zebeli, Q. (2023). Magnesium in dairy cattle nutrition: a meta-analysis on magnesium absorption in dairy cattle and assessment of simple solubility tests to predict magnesium availability from supplemental sources. Journal of Dairy Science, 106(12), 8758-8773. doi:10.3168/jds.2023-23560 Crossref ● PubMed ● Google Scholar | ||||
| ||||
| Kovács, L., Pajor, F., Bakony, M., Fébel, H., & Edwards, J. E. (2023). Prepartum magnesium butyrate supplementation of dairy cows improves colostrum yield, calving ease, fertility, early lactation performance and neonatal vitality. Animals, 13(8), 1319. doi:10.3390/ani13081319 Crossref ● PubMed ● PMC ● Google Scholar | ||||
| ||||
| Litwinczuk, Z., Domaradzki, P., Florek, M., Żółkiewski, P., & Staszowska, A. (2015). Content of macro- andmicroelements in the meat of young bulls of three native breeds (Polish Red, White-Backed and PolishBlack-and-White) in comparison with Simmental and Polish Holstein-Friesian. Annals of Animal Science, 15(4), 977-985. doi:10.1515/aoas-2015-0058 Crossref ● Google Scholar | ||||
| ||||
| Meng, J., Wang, Y., Cao, J., Teng, W., Wang, J., & Zhang, Y. (2024). Study on the changes of bone calcium during the fermentation of bone powders with different fermenters. Foods, 13(2), 227. doi:10.3390/foods13020227 Crossref ● PubMed ● PMC ● Google Scholar | ||||
| ||||
| Mitchell, H., Pecoraro, H. L., Webb, B. T., Choi, B. J., Idamawatta, C., Mostrom, M. S., Steichen, Q. P., & Hoppe, K. (2025). Copper and manganese levels are associated with infectious abortions, stillbirths, and early neonatal deaths in upper Midwest beef cattle herds. Journal of the American Veterinary Medical Association, 263(S1), S65-S70. doi:10.2460/javma.24.12.0801 Crossref ● PubMed ● PMC ● Google Scholar | ||||
| ||||
| Momot, M., Nogalski, Z., Pogorzelska-Przybyłek, P., & Sobczuk-Szul, M. (2020). Influence of genotype and slaughter age on the content of selected minerals and fatty acids in the longissimus thoracis muscle of crossbred bulls. Animals, 10(11), 1-12. doi:10.3390/ani10112004 Crossref ● PubMed ● PMC ● Google Scholar | ||||
| ||||
| Neves, R. C. (2023). Relationship between calcium dynamics and inflammatory status in the transition period of dairy cows. JDS Communications, 4(3), 225-229. doi:10.3168/jdsc.2022-0348 Crossref ● PubMed ● PMC ● Google Scholar | ||||
| ||||
| Oconitrillo, M., Wickramasinghe, J., Omale, S., Beitz, D., & Appuhamy, R. (2024). Effects of elevating zinc supplementation on the health and production parameters of high-producing dairy cows. Animals, 14(3), 395. doi:10.3390/ani14030395 Crossref ● PubMed ● PMC ● Google Scholar | ||||
| ||||
| Özlü, H., & Atasever, M. (2018). Effects of age and breed on trace elements content in cattle muscle and edible offal. Asian Journal of Medical and Biological Research, 4(2), 157-163. doi:10.3329/ajmbr.v4i2.38250 Crossref ● Google Scholar | ||||
| ||||
| Paliy, A., Naumenko, А., Paliy, A., Zolotaryova, S., Zolotarev, A., Tarasenko, L., & Nechyporenko, O. (2020). Identifying changes in the milking rubber of milking machines during testing and under industrial conditions. Eastern-European Journal of Enterprise Technologies, 5/1(107), 127-137. doi:10.15587/1729-4061.2020.212772 Crossref ● Google Scholar | ||||
| ||||
| Patel, N., Bergamaschi, M., Cagnin, M., Bittante, G., & Notes, A. (2020). Exploration of the effect of farm, breed, sex and animal ondetailed mineral profile of beef and their latent explanatory factors. International Journal of Food Science and Technology, 55(3), 1046-1056. doi:10.1111/ijfs.14455 Crossref ● Google Scholar | ||||
| ||||
| Pilarczyk, R. (2014a). Concentrations of toxic and nutritional essential elements in meat from different beef breeds reared under intensive production systems. Biological Trace Element Research, 158(1), 36-44. doi:10.1007/s12011-014-9913-y Crossref ● PubMed ● Google Scholar | ||||
| ||||
| Pilarczyk, R. (2014b). Elemental composition of muscle tissue of various beef breeds reared under intensive production systems. International Journal of Environmental Research, 8(4), 931-940. Google Scholar | ||||
| ||||
| Pereira, V., Carbajales, P., López-Alonso, M., & Miranda, M. (2018). Trace element concentrations in beef cattle related to breed aptitude. Biological Trace Element Research, 186(5), 135-142. doi:10.1007/s12011-018-1276-3 Crossref ● PubMed ● Google Scholar | ||||
| ||||
| Plöntzke, J., Berg, M., Ehrig, R., Leonhard-Marek, S., Müller, K. E., & Röblitz, S. (2022). Model-based exploration of hypokalemia in dairy cows. Scientific Reports, 12(1), 19781. doi:10.1038/s41598-022-22596-0 Crossref ● PubMed ● PMC ● Google Scholar | ||||
| ||||
| Polidori, P., Pucciarelli, S., Cammertoni, N., Polzonetti, V., & Vincenzetti, S. (2017). The effects of slaughter age on carcass and meat quality of fabrianese lambs. Small Ruminant Research, 155, 12-15. doi:10.1016/j.smallrumres.2017.08.012 Crossref ● Google Scholar | ||||
| ||||
| Prasad, A. S. (2012). Discovery of human zinc deficiency: 50 years later. Journal of Trace Elements in Medicine and Biology, 26(2-3), 66-69. doi:10.1016/j.jtemb.2012.04.004 Crossref ● PubMed ● Google Scholar | ||||
| ||||
| Raths, R., Rodriguez, B., Holloway, J. W., Waite, A., Lawrence, T., van de Ligt, J. L. G., Purvis, H., Doering-Resch, H., & Casper, D. P. (2023) Comparison of growth performance and tissue cobalt concentrations in beef cattle fed inorganic and organic cobalt sources. Translational Animal Science, 7(1), txad120. doi:10.1093/tas/txad120 Crossref ● PubMed ● PMC ● Google Scholar | ||||
| ||||
| Rawson, J. K., Baptiste, Q., Harned, R., & Knights, M. (2022). PSXIV-14 selenium and copper deficiency associated decline in reproductive performance in summer bred, rotationally grazed, forage fed beef cattle. Journal of Animal Science, 100(3), 228-229. doi:10.1093/jas/skac247.414 Crossref ● PubMed ● Google Scholar | ||||
| ||||
| Reykdal, O., Rabieh, S., Steingrimsdottir, L., & Gunnlaugsdottir, H. (2011). Minerals and trace elements in Icelandic dairy products and meat. Journal of Food Composition and Analysis, 24(7), 980-986. doi:10.1016/j.jfca.2011.03.002 Crossref ● Google Scholar | ||||
| ||||
| Robert, A., Cheddani, L., Ebel, A., Vilaine, E., Seidowsky, A., Massy, Z., & Essig, M. (2020). Métabolisme du sodium: une mise au point en 2019 [Sodium metabolism: an update in 2019]. Néphrologie et Thérapeutique, 16(2), 77-82. doi:10.1016/j.nephro.2019.06.004 Crossref ● PubMed ● Google Scholar | ||||
| ||||
| Rueda García, A. M., Fracassi, P., Scherf, B. D., Hamon, M., & Iannotti, L. (2024). Unveiling the nutritional quality of terrestrial animal source foods by species and characteristics of livestock systems. Nutrients, 16(19), 3346. doi:10.3390/nu16193346 Crossref ● PubMed ● PMC ● Google Scholar | ||||
| ||||
| Sickinger, M., Jörling, J., Büttner, K., Roth, J., & Wehrend, A. (2025). Association of stress and inflammatory diseases with serum ferritin and iron concentrations in neonatal calves. Animals, 15(7), 1021. doi:10.3390/ani15071021 Crossref ● PubMed ● PMC ● Google Scholar | ||||
| ||||
| Silva, F. L., Oliveira-Júnior, E. S, e Silva, M. H. M., López-Alonso, M., & Pierangeli, M. A. P. (2022). Trace elements in beef cattle: a review of the scientific approach from one health perspective. Animals, 12(17), 2254. doi:10.3390/ani12172254 Crossref ● PubMed ● PMC ● Google Scholar | ||||
| ||||
| Spek, J. W., Bannink, A., Gort, G., Hendriks W. H., & Dijkstra, J. (2012). Effect of sodium chloride intake on urine volume, urinary urea excretion, and milk urea concentration in lactating dairy cattle. Journal of Dairy Science, 95(12), 7288-7298. doi:10.3168/jds.2012-5688 Crossref ● PubMed ● Google Scholar | ||||
| ||||
| Stadnik, J. (2024). Nutritional value of meat and meat products and their role in human health. Nutrients, 16(10), 1446. doi:10.3390/nu16101446 Crossref ● PubMed ● PMC ● Google Scholar | ||||
| ||||
| Thirumoorthy, N., Sunder, A. S., Kumar, K. M., Kumar, M. S., Ganesh, G., & Chatterjee, M. (2011). Review of metallothionein isoforms and their role in pathophysiology. World Journal of Surgical Oncology, 9(1), 54-61. doi:10.1186/1477-7819-9-54 Crossref ● PubMed ● PMC ● Google Scholar | ||||
| ||||
| Tizioto, P. C., Gromboni, C. F., de Araujo Nogueira, A. R., de Souza, M. V., de Alvarenga Mudadu, M., Tholon, P., do Nascimento Rosa, A., Tullio, R. R., Medeiros, S. R., Nassu, R. T., & de Almeida Regitano, L. C. (2014). Calcium and potassium content in beef: influences on tenderness and associations with molecular markers in Nellore cattle. Meat Science, 96(1), 436-440. doi:10.1016/j.meatsci.2013.08.001 Crossref ● PubMed ● Google Scholar | ||||
| ||||
| Turgut, F., Kanbay, M., Metin, M. R., Uz, E., Akcay, A., & Covic, A. (2008). Magnesium supplementation helps to improve carotid intima media thickness in patients on hemodialysis. International Urology and Nephrology, 40(4), 1075-1082. doi:10.1007/s11255-008-9410-3 Crossref ● PubMed ● Google Scholar | ||||
| ||||
| Valaitienė, V., Klementavičiūtė, J., & Stanytė, G. (2016). The influence of cattle breed on nutritional value and mineral content of meat. Veterinary Medicine and Zootechnics, 73(95), 133-137. Google Scholar | ||||
| ||||
| van den Brink, L. M., Cohrs, I., Golbeck, L., Wächter, S., Dobbelaar, P., Teske, E., & Grünberg, W. (2023). Effect of dietary phosphate deprivation on red blood cell parameters of periparturient dairy cows. Animals, 13(3), 404. doi:10.3390/ani13030404 Crossref ● PubMed ● PMC ● Google Scholar | ||||
| ||||
| Venäläinen, E. R., Anttila, M., & Peltonen, K. (2005). Heavy metals in tissue samples of Finnish moos, Alces alces. Bulletin of Environmental Contamination and Toxicology, 74(3), 526-536. doi:10.1007/s00128-005-0616-0 Crossref ● PubMed ● Google Scholar | ||||
| ||||
| Wilkens, M. R., Nelson, C. D., Hernandez, L. L., & McArt, J. A. A. (2020). Symposium review: transition cow calcium homeostasis - health effects of hypocalcemia and strategies for prevention. Journal of Dairy Science, 103(3), 2909-2927. doi:10.3168/jds.2019-17268 Crossref ● PubMed ● Google Scholar | ||||
| ||||
| Yamada, S., & Inaba, M. (2021). Potassium metabolism and management in patients with CKD. Nutrients, 13(6), 1751. doi:10.3390/nu13061751 Crossref ● PubMed ● PMC ● Google Scholar | ||||
| ||||
| Yi, Y. J., & Zhang, S. H. (2012). Heavy metal (Cd, Cr, Cu, Hg, Pb, Zn) concentrations in seven fish species in relation to fish size and location along the Yangtze River. Environmental Science and Pollution Research, 19(9), 3989-3996. doi:10.1007/s1156-012-0840-1 Crossref ● PubMed ● Google Scholar | ||||
| ||||
| Zasadowski, A., Barski, D., Markiewicz, K., Zasadowski, Z., Spodniewska, A., & Terlecka, A. (1999). Levels of cadmium contamination of domestic animals (cattle) in the region of warmia and masuria. Polish Journal of Environmental Studies, 8(6), 443-446. Google Scholar | ||||
| ||||
| Zenad, W., Benatallah, A., Zaouani, M., Boudjellaba, S., Ainouz, L., Mahdi, M. H. B., & Benouadah, A. (2020). Incidence and public health risk assessment of toxic metal residues (cadmium and lead) in liver and kidney of ovine and bovine from Algeria. Bulletin of University of Agricultural Sciences and Veterinary Medicine Cluj-Napoca. Veterinary Medicine, 77(2), 17-23. doi:10.15835/buasvmcn-vm:2020.0002 Crossref ● Google Scholar | ||||
Refbacks
- There are currently no refbacks.
Copyright (c) 2025 Stepan Michalchenko, Igor Korkh, Anatoliy Paliy, Nataliia Boiko, Kateryna Rodionova, Alyona Siabro, Olena Pavlichenko, Andriy Kudriashov, Natalia Palii, Tetiana Holubieva

This work is licensed under a Creative Commons Attribution 4.0 International License.
