HEART RATE VARIABILITY FOR EVALUATING COGNITIVE STRESS IN HEALTHY STUDENTS: THE INFLUENCE OF PHYSICAL FITNESS LEVEL

Mariia Fedkiv, Lyubomyr Vovkanych, Bogdan Kindzer


DOI: http://dx.doi.org/10.30970/sbi.1904.853

Abstract


Background. The impact of adaptation to physical loads on heart rate variability (HRV) responses during cognitive or emotional stress remains insufficiently studied. This study aimed to examine changes in HRV parameters among individuals with differing levels of adaptation to speed-strength physical loads while performing complex visual-motor reaction (VMR) tasks.
Materials and Methods. The study compared HRV metrics between trained males (22 karate athletes, Group T) and untrained males (26 students, Group UT). Groups did not differ significantly in age and anthropometric parameters. HRV was recorded both at rest and during three complex visual-motor choice reaction (VMCR) tests involving increasing numbers of stimuli – VMCR60, VMCR90, and VMCR120. The following HRV indices were calculated: the heart rate (HR), the standard deviation of normal RR intervals (SDNN), the root mean square of successive differences (RMSSD), the percentage of successive interval pairs differing by more than 50 ms (pNN50), the length of the short axis of the Poincaré plot (SD1), and the length of the long axis of the Poincaré plot (SD2)
Results and Discussion. At rest, values of SDNN, SD1, RMSSD, and pNN50 were 11.80–43.01 % higher in group T than in group UT (p < 0.05), while HR was 7.40 % lower in group T (p <0.05). A tendency towards the prevalence of persons with dominance of sympathetic tone within the group UT was observed. During VMCR tasks, HRV parameters changed in both groups. Specifically, SDNN decreased by 38–42 % (p <0.01), with a more pronounced reduction in group T. We found a nearly significant strong negative correlation between SDNN reduction and the number of stimuli in the VMCR tests (r = -0.99, p = 0.10) in group UT. During the VMCR tasks, group T showed significant decreases in RMSSD (p <0.01) and pNN50 (p = 0.03), whereas no significant changes were observed in group UT. A nearly significant strong negative correlation was found between pNN50 and the number of stimuli in group UT (r = -0.99, p = 0.08), in contrast to group T. The SD1 decreased significantly during the VMCR tasks in both groups (p <0.01), with a nearly significant correlation between these changes and the number of stimuli in group T (r = -0.995, p = 0.06) and group UT (r = -0.992, p = 0.07). The effect of VMCR on SD1 was more pronounced in group T. Furthermore, SD2 significantly decreased during VMCR in both groups (p <0.01), with larger reductions observed in group T. Analysis of HRV at rest suggests that adaptation to speed-strength training is associated with an enhanced parasympathetic tone. Under cognitive load, there is a shift toward increased sympathetic activity. These changes are more pronounced and occur more rapidly in trained individuals, as indicated by the progressive alterations in specific HRV parameters among the untrained group during the sequential series of tests.
Conclusion. Individuals adapted to speed-strength training exhibited higher parasympathetic activity at rest and more efficient sympathetic responses to cognitive load, indicating superior autonomic regulation adaptability compared to untrained individuals.


Keywords


heart rate variability, physical loads adaptation, complex visual-motor reactions, speed-strength training, students

Full Text:

PDF

References


Bhattacharya, P., Chatterjee, S., Mondal, S., & Roy, D. (2023). Heart rate variability as a neuroautonomic marker to assess the impact of karate training - an observational pediatric study. International Journal of Exercise Science, 16(2), 342-352. doi:10.70252/cann1641
CrossrefGoogle Scholar

Castaldo, R., Melillo, P., Bracale, U., Caserta, M., Triassi, M., & Pecchia, L. (2015). Acute mental stress assessment via short term HRV analysis in healthy adults: a systematic review with meta-analysis. Biomedical Signal Processing and Control, 18, 370-377. doi:10.1016/j.bspc.2015.02.012
CrossrefGoogle Scholar

Chakraborty, S., Suryavanshi, C. A., & Nayak, K. R. (2023). Cognitive function and heart rate variability in open and closed skill sports. Annals of Medicine, 55(2), 2267588. doi:10.1080/07853890.2023.2267588
CrossrefPubMedPMCGoogle Scholar

Chaabène, H., Hachana, Y., Franchini, E., Mkaouer, B., & Chamari, K. (2012). Physical and physiological profile of elite karate athletes. Sports Medicine, 42(10), 829-843. doi:10.1007/bf03262297
CrossrefPubMedGoogle Scholar

Chieffi, S., Messina, G., Villano, I., Messina, A., Valenzano, A., Moscatelli, F., Salerno, M., Sullo, A., Avola, R., Monda, V., Cibelli, G., & Monda, M. (2017). Neuroprotective effects of physical activity: evidence from human and animal studies. Frontiers in Neurology, 8, 188. doi:10.3389/fneur.2017.00188
CrossrefPubMedPMCGoogle Scholar

Corkery, A. T., Howery, A. J., Miller, K. B., & Barnes, J. N. (2021). Influence of habitual aerobic and resistance exercise on cerebrovascular reactivity in healthy young adults. Journal of Applied Physiology, 130(6), 1928-1935. doi:10.1152/japplphysiol.00823.2020
CrossrefPubMedPMCGoogle Scholar

Council of Europe. (1997). Convention for protection of human rights and dignity of the human being with regard to the application of biology and biomedicine: convention on human rights and biomedicine. Kennedy Institute of Ethics Journal, 7(3), 277-290. doi:10.1353/ken.1997.0021
CrossrefPubMedGoogle Scholar

Damoun, N., Amekran, Y., Taiek, N., & El Hangouche, A. J. (2024). Heart rate variability measurement and influencing factors: towards the standardization of methodology. Global Cardiology Science and Practice, 2024(4), e202435. doi:10.21542/gcsp.2024.35
CrossrefPubMedPMCGoogle Scholar

Dong, J.-G. (2016). The role of heart rate variability in sports physiology. Experimental and Therapeutic Medicine, 11(5), 1531-1536. doi:10.3892/etm.2016.3104
CrossrefPubMedPMCGoogle Scholar

Duru, A. D., & Balcioglu, T. H. (2018). Functional and structural plasticity of brain in elite karate athletes. Journal of Healthcare Engineering, 2018, 8310975. doi:10.1155/2018/8310975
CrossrefPubMedPMCGoogle Scholar

Erickson, K. I., Leckie, R. L., & Weinstein, A. M. (2014). Physical activity, fitness, and gray matter volume. Neurobiology of Aging, 35(2), S20-S28. doi:10.1016/j.neurobiolaging.2014.03.034
CrossrefPubMedPMCGoogle Scholar

Fisher, A. J., Reeves, J. W., & Chi, C. (2016). Dynamic RSA: examining parasympathetic regulatory dynamics via vector-autoregressive modeling of time-varying RSA and heart period. Psychophysiology, 53(7), 1093-1099. doi:10.1111/psyp.1264
CrossrefPubMedGoogle Scholar

Franchini, E. (2023). Energy system contributions during olympic combat sports: a narrative review. Metabolites, 13(2), 297. doi:10.3390/metabo13020297
CrossrefPubMedPMCGoogle Scholar

Gröpel, P., Urner, M., Pruessner, J. C., & Quirin, M. (2018). Endurance- and resistance-trained men exhibit lower cardiovascular responses to psychosocial stress than untrained men. Frontiers in Psychology, 9, 852. doi:10.3389/fpsyg.2018.00852
CrossrefPubMedPMCGoogle Scholar

Hansen, A. L., Johnsen, B. H., Sollers, J. J., Stenvik, K., & Thayer, J. F. (2004). Heart rate variability and its relation to prefrontal cognitive function: the effects of training and detraining. European Journal of Applied Physiology, 93(3), 263-272. doi:10.1007/s00421-004-1208-0
CrossrefPubMedGoogle Scholar

Hornby-Foster, I., Richards, C. T., Drane, A. L., Lodge, F. M., Stembridge, M., Lord, R. N., Davey, H., Yousef, Z., & Pugh, C. J. A. (2025). Resistance- and endurance-trained young men display comparable carotid artery strain parameters that are superior to untrained men. European Journal of Applied Physiology, 125(1), 131-144. doi:10.1007/s00421-024-05598-w
CrossrefPubMedPMCGoogle Scholar

Hvid, L. G., Harwood, D. L., Eskildsen, S. F., & Dalgas, U. (2021). A critical systematic review of current evidence on the effects of physical exercise on whole/regional grey matter brain volume in populations at risk of neurodegeneration. Sports Medicine, 51(8), 1651-1671. doi:10.1007/s40279-021-01453-6
CrossrefPubMedGoogle Scholar

Immanuel, S., Teferra, M. N., Baumert, M., & Bidargaddi, N. (2023). Heart rate variability for evaluating psychological stress changes in healthy adults: a scoping review. Neuropsychobiology, 82(4), 187-202. doi:10.1159/000530376
CrossrefPubMedPMCGoogle Scholar

Kassiano, W., de Vasconcelos Costa, B. D., Lima-Júnior, D., Gantois, P., Fonseca, F. S., da Cunha Costa, M., & de Sousa Fortes, L. (2021). Parasympathetic nervous activity responses to different resistance training systems. International Journal of Sports Medicine, 42(1), 82-89. doi:10.1055/a-1219-7750
Crossref ● PubMedGoogle Scholar

Kim, H.-G., Cheon, E.-J., Bai, D.-S., Lee, Y. H., & Koo, B.-H. (2018). Stress and heart rate variability: a meta-analysis and review of the literature. Psychiatry Investigation, 15(3), 235-245. doi:10.30773/pi.2017.08.17
CrossrefPubMedPMCGoogle Scholar

Kanyhina, S. M., Syvolap, V. V., & Potapenko, M. S. (2020). Autonomic support of endurance, strength and speed performance in athletes. Zaporozhye Medical Journal, 22(6), 767-774. doi:10.14739/2310-1210.2020.6.218408
CrossrefGoogle Scholar

Kochyna M. L., K., Bila, A. A., Bondarenko, I. G., & Bondarenko, O. V. (2020). Features of change of students 'heart rate variability indicators under the influence of mental and physical load. Ukrainian Journal of Medicine, Biology and Sports, 5(6), 396-403. doi:10.26693/jmbs05.06.396 (In Ukrainian)
CrossrefGoogle Scholar

Korsak, A., Kellett, D. O., Aziz, Q., Anderson, C., D'Souza, A., Tinker, A., Ackland, G. L., & Gourine, A. V. (2023). Immediate and sustained increases in the activity of vagal preganglionic neurons during exercise and after exercise training. Cardiovascular Research, 119(13), 2329-2341. doi:10.1093/cvr/cvad115
CrossrefPubMedPMCGoogle Scholar

Laborde, S., Mosley, E., & Thayer, J. F. (2017). Heart rate variability and cardiac vagal tone in psychophysiological research - recommendations for experiment planning, data analysis, and data reporting. Frontiers in Psychology, 8, 213. doi:10.3389/fpsyg.2017.00213
CrossrefPubMedPMCGoogle Scholar

Lee, H. W., Ahmad, M., Wang, H.-W., & Leenen, F. H. H. (2020). Effects of exercise on BDNF-TrkB signaling in the paraventricular nucleus and rostral ventrolateral medulla in rats post myocardial infarction. Neuropeptides, 82, 102058. doi:10.1016/j.npep.2020.102058
CrossrefPubMedGoogle Scholar

Liashenko, V. P., & Stetsenko, S. M. (2024). Osoblyvosti variabelnosti sertsevoho rytmu na foni porushennia snu ta stresovykh faktoriv: teoretychnyi aspekt [Features of heart rate variability in the context of sleep disturbances and stress factors: theoretical aspect]. Slobozhanskyi naukovyi visnyk. Seriia: Pryrodnychi nauky, 1, 43-49. doi:10.32782/naturalspu/2024.1.5 (In Ukrainian)
CrossrefGoogle Schola

Lisun, Yu. B., & Uhlev, Ye. I. (2020). Heart rate variability, applying and methods of analysis. Pain, Anaesthesia and Intensive Care, 4(93), 83-89. doi:10.25284/2519-2078.4(93).2020.220693 (In Ukrainian)
CrossrefGoogle Scholar

Luque-Casado, A., Zabala, M., Morales, E., Mateo-March, M., & Sanabria, D. (2013). Cognitive performance and heart rate variability: the influence of fitness level. PLoS One, 8(2), e56935. doi:10.1371/journal.pone.0056935
CrossrefPubMedPMCGoogle Scholar

Makarenko, M. V., Lizohub, V. S., & Kharchenko, D. M. (2018). Processing of visual-auditory information of varying degrees of complexity in people with different properties of the main nervous processes. Cherkasy University Bulletin: Biological Sciences Series, 1, 92-104. doi:10.31651/2076-5835-2018-1-1-92-104
CrossrefGoogle Scholar

Mee, D. J., Gevonden, M. J., Westerink, J. H. D. M., & de Geus, E. J. C. (2023). Cardiorespiratory fitness, regular physical activity, and autonomic nervous system reactivity to laboratory and daily life stress. Psychophysiology, 60(4), e14212. doi:10.1111/psyp.14212
CrossrefPubMedGoogle Scholar

Peabody, J. E., Ryznar, R., Ziesmann, M. T., & Gillman, L. (2023). A systematic review of heart rate variability as a measure of stress in medical professionals. Cureus, 15(1), e34345. doi:10.7759/cureus.34345
CrossrefGoogle Scholar

Raji, C. A., Meysami, S., Hashemi, S., Garg, S., Akbari, N., Ahmed, G., Chodakiewitz, Y. G., Nguyen, T. D., Niotis, K., Merrill, D. A., & Attariwala, R. (2024). Exercise-related physical activity relates to brain volumes in 10,125 individuals. Journal of Alzheimer's Disease, 97(2), 829-839. doi:10.3233/jad-230740
CrossrefPubMedPMCGoogle Scholar

Ridkovets, S. H. (2015). Otsinka variabelnosti sertsevoho rytmu zalezhno vid rivnia fizychnoho zdorovia [Assessment of heart rate variability depending on the level of physical health]. Dovkillia ta zdorovia, 3(74), 36-39. Retrieved from http://www.dovkil-zdorov.kiev.ua/env/74-0036.pdf (In Ukrainian)
Google Scholar

Sammito, S., Thielmann, B., Klussmann, A., Deußen, A., Braumann, K.-M., & Böckelmann, I. (2024). Guideline for the application of heart rate and heart rate variability in occupational medicine and occupational health science. Journal of Occupational Medicine and Toxicology, 19(1), 15. doi:10.1186/s12995-024-00414-9
CrossrefPubMedPMCGoogle Scholar

Shushkovska, Y. Y., Afanasiuk, O. І., & Shmaliy, V. I. (2023). Stress and the cardiovascular system performance: current state of the problem (literature overview). Reports of Vinnytsia National Medical University, 27(3), 489-494. doi:10.31393/reports-vnmedical-2023-27(3)-22 (In Ukrainian)
CrossrefGoogle Scholar

Shvets, A. V. (2020). Henderni osoblyvosti rehuliatsii sertsevoho rytmu u viiskovosluzhbovtsiv v umovakh dii informatsiinoho stresu riznoi intensyvnosti [Gender features of heart rate regulation in military personnel under conditions of information stress of varying intensity]. Ukrainian Journal of Military Medicine, 1(2), 56-65. doi:10.46847/ujmm.2020.2(1)-056 (In Ukrainian)
CrossrefGoogle Scholar

Slyvka, Ya. I., Savka, Yu. M., Kentesh, O. P., & Buhir, I. V. (2019). Doslidzhennia psykhofiziolohichnoho stanu studentiv z urakhuvanniam stupenia napruzhennia rehuliatornykh system [Research of psychophysiological state of students using the degree of regulatory systems' tension]. Naukovyi visnyk Uzhhorodskoho universytetu, Seriia Medytsyna, 59(1), 82-86. doi:10.24144/2415-8127.2019.59.82-86 (In Ukrainian)
Crossref

Vovkanych, L., & Kachmar, P. (2013) Typolohichni osoblyvosti variabelnosti sertsevoho rytmu yunykh vesluvalnykiv na kanoe [Typological features of heart rate variability in young canoeists]. Fizychna aktyvnist, zdorovia i sport, 3(13), 60-70. (In Ukrainian)
Google Scholar

Wan, H.-Y., Bunsawat, K., & Amann, M. (2023). Autonomic cardiovascular control during exercise. American Journal of Physiology-Heart and Circulatory Physiology, 325(4), H675-H686. doi:10.1152/ajpheart.00303.2023
CrossrefPubMedPMCGoogle Scholar

World Medical Association. (2013). World Medical Association Declaration of Helsinki: ethical principles for medical research involving human subjects. JAMA, 310(20), 2191-2194. doi:10.1001/jama.2013.281053
CrossrefPubMedGoogle Scholar


Refbacks

  • There are currently no refbacks.


Copyright (c) 2025 Mariia Fedkiv, Lyubomyr Vovkanych, Bogdan Kindzer

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.