EXPRESSION PATTERNS OF SCOTS PINE DEFENSIN GENES UNDER ENVIRONMENTAL STRESSES

Yurii Yusypovych, Oleh Kit, Yuliia Shalovylo, Valentina Kovaleva


DOI: http://dx.doi.org/10.30970/sbi.1904.854

Abstract


Background. Scots pine (Pinus sylvestris L.) is a highly adaptable forest species, yet it faces increasing threats from climate-induced droughts despite its natural stress tolerance. To cope with environmental stressors, plants deploy defense mechanisms, such as antimicrobial peptides (AMPs). However, the role of defensins, a key AMP class, in pine stress responses remains insufficiently explored.
Materials and Methods. To investigate the responsiveness of PsDef1–4 genes to environmental stimuli, Scots pine seedlings were exposed to biotic stress (phytopathogenic fungi Fusarium verticillioides F3 and Ophiostoma clavatum B0922, and a beneficial endophytic bacterium Pseudomonas putida P57) and various abiotic stressors, including acidification, cold, heat, drought, salinity, flooding, and heavy metals. Gene expression was analyzed via quantitative RT-PCR. Orthologs of PsDef1–4 were identified in the genome assemblies of Pinus tabuliformis and Pinus taeda. Promoter regions (2 kb upstream) were analyzed for cis-acting regulatory elements using the PlantCARE database.
Results and Discussion. In silico analysis of the promoter regions of PtbDef1–4 and PtaDef1,2,4 (orthologs of PsDef1–4) revealed a high proportion (44–57 %) of cis-acting regulatory elements associated with stress responsiveness, suggesting their involvement in plant protection. In vivo gene expression analysis showed that both pathogenic fungi and the endophytic bacterium induced upregulation of PsDef1–4 at 48 h post-inoculation. The responses to abiotic stress varied: drought and flooding increased expression of all four defensin genes, while zinc treatment and cold stress caused strong downregulation. Expression responses to heat, salinity, acidification, and cadmium were gene-specific.
Conclusion. Overall, Scots pine defensin genes are responsive not only to pathogenic and beneficial microbes but also to a wide range of abiotic stresses, indicating their broader role in adaptive responses to environmental challenges. These findings highlight defensins as promising candidate genes for breeding programs aimed at developing climate-resilient pine genotypes.


Keywords


Pinus sylvestris L., defensin gene expression, cis-acting regulatory elements, biotic and abiotic stress

Full Text:

PDF

References


Brichta, J., Vacek, S., Vacek, Z., Cukor, J., Mikeska, M., Bílek, L., Šimůnek, V., Gallo, J. & Brabec, P. (2023). Importance and potential of Scots pine (Pinus sylvestris L.) in 21st century. Central European Forestry Journal, 69(1), 3-20. doi:10.2478/forj-2022-0020
CrossrefGoogle Scholar

Brichta, J., Šimůnek, V., Bílek, L., Vacek, Z., Gallo, J., Drozdowski, S., Bravo-Fernández, J. A., Mason, B., Roig Gomez, S., Hájek, V., Vacek, S., Štícha, V., Brabec, P., & Fuchs, Z. (2024). Effects of climate change on Scots pine (Pinus sylvestris L.) growth across Europe: decrease of tree-ring fluctuation and amplification of climate stress. Forests, 15(1), 91. doi:10.3390/f15010091
CrossrefGoogle Scholar

Cannon, S. B., Mitra, A., Baumgarten, A., Young, N. D., & May, G. (2004). The roles of segmental and tandem gene duplication in the evolution of large gene families in Arabidopsis thaliana. BMC Plant Biology, 4(1), 10. doi:10.1186/1471-2229-4-10
CrossrefPubMedPMCGoogle Scholar

Chano, V., Gailing, O., Collada, C., Soto, Á., & Majada, J. (2023). Differential gene expression analysis of the resprouting process in Pinus canariensis provides new insights into a rare trait in conifers. Plant Growth Regulation, 100(3), 717-731. doi:10.1007/s10725-023-00970-w
CrossrefGoogle Scholar

Chen, H., Lai, Z., Shi, J., Xiao, Y., Chen, Z., & Xu, X. (2010). Roles of Arabidopsis WRKY18, WRKY40 and WRKY60 transcription factors in plant responses to abscisic acid and abiotic stress. BMC Plant Biology, 10(1), 281. doi:10.1186/1471-2229-10-281
CrossrefPubMedPMCGoogle Scholar

Chen, X., Zhang, T., Wang, H., Zhao, W., & Guo, Z. (2025). Transcription factor WRKY complexes in plant signaling pathways. Phytopathology Research, 7(1), 54. doi:10.1186/s42483-025-00349-x
CrossrefGoogle Scholar

Conn, V. M., Walker, A. R., & Franco, C. M. M. (2008). Endophytic actinobacteria induce defense pathways in Arabidopsis thaliana. Molecular Plant-Microbe Interactions, 21(2), 208-218. doi:10.1094/mpmi-21-2-0208
CrossrefPubMedGoogle Scholar

Davydenko, K., Vasaitis, R., Elfstrand, M., Baturkin, D., Meshkova, V., & Menkis, A. (2021). Fungal communities vectored by Ips sexdentatus in declining Pinus sylvestris in Ukraine: focus on occurrence and pathogenicity of ophiostomatoid species. Insects, 12(12), 1119. doi:10.3390/insects12121119
CrossrefPubMedPMCGoogle Scholar

Domingo, G., Locato, V., Cimini, S., Ciceri, L., Marsoni, M., De Gara, L., Bracale, M., & Vannini, C. (2024). A comprehensive characterization and expression profiling of defensin family peptides in Arabidopsis thaliana with a focus on their abiotic stress-specific transcriptional modulation. Current Plant Biology, 39, 100376. doi:10.1016/j.cpb.2024.100376
CrossrefGoogle Scholar

Du, M., Zhao, J., Tzeng, D. T. W., Liu, Y., Deng, L., Yang, T., Zhai, Q., Wu, F., Huang, Z., Zhou, M., Wang, Q., Chen, Q., Li, C., & Li, C. (2017). MYC2 orchestrates a hierarchical transcriptional cascade that regulates jasmonate-mediated plant immunity in tomato. The Plant Cell, 29(8), 1883-1906. doi:10.1105/tpc.16.00953
CrossrefPubMedPMCGoogle Scholar

Gao, Q. M., Venugopal, S., Navarre, D., & Kachroo, A. (2011). Low oleic acid-derived repression of jasmonic acid-inducible defense responses requires the WRKY50 and WRKY51 proteins. Plant Physiology, 155(1), 464-476. doi:10.1104/pp.110.166876
CrossrefPubMedPMCGoogle Scholar

Gao, Y., Zan, X. L., Wu, X. F., Yao, L., Chen, Y. L., Jia, S. W., & Zhao, K. J. (2014). Identification of fungus-responsive cis-acting element in the promoter of Brassica juncea chitinase gene, BjCHI1. Plant Science, 215-216, 190-198. doi:10.1016/j.plantsci.2013.11.008
CrossrefPubMedGoogle Scholar

Gautam, J. K., Giri, M. K., Singh, D., Chattopadhyay, S., & Nandi, A. K. (2021). MYC2 influences salicylic acid biosynthesis and defense against bacterial pathogens in Arabidopsis thaliana. Physiologia Plantarum, 173(4), 2248-2261. doi:10.1111/ppl.13575
CrossrefPubMedGoogle Scholar

Germain, H., Lachance, D., Pelletier, G., Fossdal, C. G., Solheim, H., & Séguin, A. (2012). The expression pattern of the Picea glauca Defensin 1 promoter is maintained in Arabidopsis thaliana, indicating the conservation of signalling pathways between angiosperms and gymnosperms. Journal of Experimental Botany, 63(2), 785-795. doi:10.1093/jxb/err303
CrossrefPubMedPMCGoogle Scholar

Giménez, M. J., Pistón, F., & Atienza, S. G. (2011). Identification of suitable reference genes for normalization of qPCR data in comparative transcriptomics analyses in the Triticeae. Planta, 233(1), 163-173. doi:10.1007/s00425-010-1290-y
CrossrefPubMedGoogle Scholar

Glazebrook, J. (2005). Contrasting mechanisms of defense against biotrophic and necrotrophic pathogens. Annual Review of Phytopathology, 43, 205-227. doi:10.1146/annurev.phyto.43.040204.135923
CrossrefPubMedGoogle Scholar

Guo, M., Chen, X., Li, S., Tian, J., Huang, W., & Shu, Y. (2025). Identification of the plant defensin (MsPDF) gene family in Medicago sativa and analysis of expression patterns under abiotic stress. Plants, 14(9), 1312. doi:10.3390/plants14091312
CrossrefPubMedPMCGoogle Scholar

Hartmann, H., Bastos, A., Das, A. J., Esquivel-Muelbert, A., Hammond, W. M., Martínez-Vilalta, J., McDowell, N. G., Powers, J. S., Pugh, T. A. M., Ruthrof, K. X., & Allen, C. D. (2022). Climate change risks to global forest health: emergence of unexpected events of elevated tree mortality worldwide. Annual Review of Plant Biology, 73(1), 673-702. doi:10.1146/annurev-arplant-102820-012804
CrossrefPubMedGoogle Scholar

Hong, M. J., Ko, C. S., Kim, J. B., & Kim, D. Y. (2024). Identification and transcriptomic profiling of salinity stress response genes in colored wheat mutant. PeerJ, 12, e17043. doi:10.7717/peerj.17043
CrossrefPubMedPMCGoogle Scholar

Huangfu, J., Li, J., Li, R., Ye, M., Kuai, P., Zhang, T., & Lou, Y. (2016). The transcription factor OsWRKY45 negatively modulates the resistance of rice to the brown planthopper Nilaparvata lugens. International Journal of Molecular Sciences, 17(6), 697. doi:10.3390/ijms17060697
CrossrefPubMedPMCGoogle Scholar

Jaber, E., Xiao, C., & Asiegbu, F. O. (2014). Comparative pathobiology of Heterobasidion annosum during challenge on Pinus sylvestris and Arabidopsis roots: an analysis of defensin gene expression in two pathosystems. Planta, 239(3), 717-733. doi:10.1007/s00425-013-2012-z
CrossrefPubMedGoogle Scholar

Jin, W., Wang, H., Liu, Q., Deng, Z., Li, X., Xu, X., Hao, H., Wu, S., Shi, Y., & Guo, H. (2024). The defensin protein NtCAL1 functions as a positive factor in plant cadmium accumulation and resistance in tobacco. Environmental and Experimental Botany, 225, 105866. doi:10.1016/j.envexpbot.2024.105866
CrossrefGoogle Scholar

Kumar, M., Yusuf, M. A., Yadav, P., Narayan, S., & Kumar, M. (2019). Overexpression of chickpea defensin gene confers tolerance to water-deficit stress in Arabidopsis thaliana. Frontiers in Plant Science, 10, 290. doi:10.3389/fpls.2019.00290
CrossrefPubMedPMCGoogle Scholar

Livak, K. J., & Schmittgen, T. D. (2001). Analysis of relative gene expression data using real-time quantitative PCR and the 2-ΔΔCT method. Methods, 25(4), 402-408. doi:10.1006/meth.2001.1262
CrossrefPubMedGoogle Scholar

Mishra, A., Singh, S. P., Mahfooz, S., Bhattacharya, A., Mishra, N., & Nautiyal, C. S. (2018). Endophyte-mediated modulation of defense-related genes and systemic resistance in Withania somnifera (L.) Dunal under Alternaria alternate stress. Applied and Environmental Microbiology, 84(8), e02845-17. doi:10.1128/aem.02845-17
CrossrefPubMedPMCGoogle Scholar

Nguyen, N. N., Lamotte, O., Alsulaiman, M., Ruffel, S., Krouk, G., Berger, N., Demolombe, V., Nespoulous, C., Dang, T. M. N., Aimé, S., Berthomieu, P., Dubos, C., Wendehenne, D., Vile, D., & Gosti, F. (2023). Reduction in PLANT DEFENSIN 1 expression in Arabidopsis thaliana results in increased resistance to pathogens and zinc toxicity. Journal of Experimental Botany, 74(17), 5374-5393. doi:10.1093/jxb/erad228
CrossrefPubMedGoogle Scholar

Ou, B., Yin, K. Q., Liu, S. N., Yang, Y., Gu, T., Hui, J. M. W., Zhang, L., Miao, J., Kondou, Y., Matsui, M., Gu, H. Y., & Qu, L. J. (2011). A high-throughput screening system for Arabidopsis transcription factors and its application to Med25-dependent transcriptional regulation. Molecular Plant, 4(3), 546-555. doi:10.1093/mp/ssr002
CrossrefPubMedGoogle Scholar

Oukala, N., Aissat, K., & Pastor, V. (2021). Bacterial endophytes: the hidden actor in plant immune responses against biotic stress. Plants, 10(5), 1012. doi:10.3390/plants10051012
CrossrefPubMedPMCGoogle Scholar

Park, H. C., Kim, M. L., Kang, Y. H., Jeon, J. M., Yoo, J. H., Kim, M. C., Park, C. Y., Jeong, J. C., Moon, B. C., Lee, J. H., Yoon, H. W., Lee, S. H., Chung, W. S., Lim, C. O., Lee, S. Y., Hong, J. C., & Cho, M. J. (2004). Pathogen- and NaCl-induced expression of the SCaM-4 promoter is mediated in part by a GT-1 box that interacts with a GT-1-like transcription factor. Plant Physiology, 135(4), 2150-2161. doi:10.1104/pp.104.041442
CrossrefPubMedPMCGoogle Scholar

Pervieux, I., Bourassa, M., Laurans, F., Hamelin, R., & Séguin, A. (2004). A spruce defensin showing strong antifungal activity and increased transcript accumulation after wounding and jasmonate treatments. Physiological and Molecular Plant Pathology, 64(6), 331-341. doi:10.1016/j.pmpp.2004.09.008
CrossrefGoogle Scholar

Phukan, U. J., Jeena, G. S., & Shukla, R. K. (2016). WRKY transcription factors: molecular regulation and stress responses in plants. Frontiers in Plant Science, 7, 760. doi:10.3389/fpls.2016.00760
CrossrefPubMedPMCGoogle Scholar

Proietti, S., Caarls, L., Coolen, S., Van Pelt, J. A., Van Wees, S. C. M., & Pieterse, C. M. J. (2018). Genome-wide association study reveals novel players in defense hormone crosstalk in Arabidopsis. Plant, Cell & Environment, 41(10), 2342-2356. doi:10.1111/pce.13357
CrossrefPubMedPMCGoogle Scholar

Rai, G. K., Khanday, D. M., Choudhary, S. M., Kumar, P., Kumari, S., Martínez-Andújar, C., Martínez-Melgarejo, P. A., Rai, P. K., Pérez-Alfocea, F., & Kumar, M. (2024). Unlocking nature's stress buster: abscisic acid's crucial role in defending plants against abiotic stress. Plant Stress, 11, 100359. doi:10.1016/j.stress.2024.100359
CrossrefGoogle Scholar

Ruszczyńska, M., & Sytykiewicz, H. (2024). New insights into involvement of low molecular weight proteins in complex defense mechanisms in higher plants. International Journal of Molecular Sciences, 25(15), 8531. doi:10.3390/ijms25158531
CrossrefPubMedPMCGoogle Scholar

Sadeghnezhad, E., Askari, H., Soltani, S., & Honarvar, F. (2014). Identification and distribution of anaerobic responsive elements (AREs) in genes functional categorization of Arabidopsis thaliana. Journal of Applied Biotechnology Reports, 1(4), 135-141.
Google Scholar

Shalovylo, Y. I., Yusypovych, Y. M., Hrunyk, N. I., Roman, I. I., Zaika, V. K., Krynytskyy, H. T., Nesmelova, I. V., & Kovaleva, V. A. (2021). Seed-derived defensins from Scots pine: structural and functional features. Planta, 254(6), 129. doi:10.1007/s00425-021-03788-w
CrossrefPubMedGoogle Scholar

Shariatipour, N., & Heidari, B. (2020). Meta-analysis of expression of the stress tolerance associated genes and uncover their cis-regulatory elements in rice (Oryza sativa L.). The Open Bioinformatics Journal, 13(1), 39-49. doi:10.2174/1875036202013010039
CrossrefGoogle Scholar

Silverstein, K. A. T., Graham, M. A., Paape, T. D., & VandenBosch, K. A. (2005). Genome organization of more than 300 defensin-like genes in Arabidopsis. Plant Physiology, 138(2), 600-610. doi:10.1104/pp.105.060079
CrossrefPubMedPMCGoogle Scholar

Šķipars, V., Krivmane, B., & Ruņģis, D. (2011). Thaumatin-like protein gene copy number variation in Scots pine (Pinus sylvestris L.). Environmental and Experimental Biology, 9, 75-81.
Google Scholar

Stotz, H. U., Thomson, J. G., & Wang, Y. (2009). Plant defensins: defense, development and application. Plant Signaling & Behavior, 4(11), 1010-1012. doi:10.4161/psb.4.11.9755
CrossrefPubMedPMCGoogle Scholar

Tuteja, N. (2007). Abscisic acid and abiotic stress signaling. Plant Signaling & Behavior, 2(3), 135-138. doi:10.4161/psb.2.3.4156
CrossrefPubMedPMCGoogle Scholar

Verma, V., Ravindran, P., & Kumar, P. P. (2016). Plant hormone-mediated regulation of stress responses. BMC Plant Biology, 16(1), 86. doi:10.1186/s12870-016-0771-y
CrossrefPubMedPMCGoogle Scholar

Viswanath, K. K., Kuo, S.-Y., Tu, C.-W., Hsu, Y.-H., Huang, Y.-W., & Hu, C.-C. (2023). The role of plant transcription factors in the fight against plant viruses. International Journal of Molecular Sciences, 24(9), 8433. doi:10.3390/ijms24098433
CrossrefPubMedPMCGoogle Scholar

Xia, Q., Zhang, H., Lv, D., El-Kassaby, Y. A., & Li, W. (2023). Insights into phylogenetic relationships in Pinus inferred from a comparative analysis of complete chloroplast genomes. BMC Genomics, 24(1), 346. doi:10.1186/s12864-023-09439-6
CrossrefPubMedPMCGoogle Scholar

Yin, Z., Liu, J., Zhao, H., Chu, X., Liu, H., Ding, X., Lu, C., Wang, X., Zhao, X., Li, Y., & Ding, X. (2023). SlMYB1 regulates the accumulation of lycopene, fruit shape, and resistance to Botrytis cinerea in tomato. Horticulture Research, 10(2), uhac282. doi:10.1093/hr/uhac282
CrossrefPubMedPMCGoogle Scholar


Refbacks

  • There are currently no refbacks.


Copyright (c) 2025 Yurii Yusypovych, Oleh Kit, Yuliia Shalovylo, Valentina Kovaleva

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.