SUCCESSIVE ANTHROPOGENIC CHANGES OF THE VEGETATION IN THE KILYAN ARM OF THE DANUBE DELTA (UKRAINE)

Liubov Borsukevych, Dmytro Dubyna, Tetiana Dziuba


DOI: http://dx.doi.org/10.30970/sbi.1903.847

Abstract


Background. In the past, floodplain vegetation, typical of estuarine ecosystems affected by a moderate surge wind phenomenon, prevailed in the Kilyan arm of the Danube Delta (Ukraine). The vegetation of this territory was represented mainly by meadows, swamps, and wetlands. Forest vegetation occupied only small areas. At the beginning of the previous century, natural complexes of the Kilyan arm of the Danube Delta underwent significant anthropogenic transformations. We distinguish two types of anthropogenic factors – large-scale and local – the latter referred to as successive. While anthropogenic, especially large-scale, pressure on natural ecosystems of the delta leads to a catastrophic alteration of the ecological regime and degradation of native flora complexes and plant communities, successive changes lead mostly to a decreased species diversity, biological productivity, and degradation of biocenoses. The main factors of local anthropogenic transformation of ecosystems are grazing-induced vegetation changes, mowing-induced vegetation changes (harvesting of reed and hay cutting), pyrogenic, biochemical changes, and afforestation. With their long-term influence and heavy load on biotopes, successive changes turn into catastrophic. On the contrary, when their influence is insignificant, or removed, the original native vegetation is restored.
Materials and Methods. Long-term comparative phytocoenotic surveys and semi-stationary studies were used in this research. The studies of the anthropogenic dyna­mics of vegetation were carried out by direct methods – on semi-stationary sites, as well as by indirect methods. The direct methods included comparing the current data with historical maps and geobotanical descriptions presented in the monograph «Reserve “Wetlands of the Danube”». Indirect methods included the reconstruction of successive trends based on the analysis of ecological and coenotic profiles.
Results and Discussion. The syntaxonomic structure of vegetation in the delta is analyzed. The paper highlights the main local successive anthropogenic changes of vegetation identified based on long-term comparative phytocoenotic surveys and semistationary studies. The anthropic changes in vegetation occur under the influence of powerful external factors associated with human activity. In the delta area, the anthropic changes exceed natural in terms of their scale and degree of influence. The main factors of such changes are grazing-induced and mowing-induced vegetation changes, pyrogenic, biochemical changes, afforestation etc. The halophytic and halophytic meadow vegetation of the coastal areas is most affected by the pasture. The sandy steppe and shrub vegetation are influenced by pyrogenic factor and forest logging. The influence of the mowing-induced factor is manifested on a narrower scale. The pressure of local anthropic factors are enhanced by the influence of global or local natural factors. The complex effect of local anthropogenic and global climatic factors on communities leads to their unification, loss of the autochthonous elements, and formation of unproductive associations. The most endangered are steppe and psammophyte vegetation with representatives of the psammophilous-littoral neoendemic pontic floristic complex.
Conclusion. The strategy for optimizing the vegetation cover of the Kilyan arm of the Danube delta is offered. Preservation, restoration, and maintenance of the delta vege­tation in the conditions of regulated river flow and climate change can be achieved through the extraction of a certain volume of plant material by mowing, grazing, and winter burning of grass. These measures should be preceded by an assessment of negative changes and their trends, as well as careful control over their implementation. A moderate pasture and mowing loading contributes to the increase of the species composition and communities’ productivity and the preservation of rare species.


Keywords


local changes, dynamic, plant communities, Kilyan arm, Danube Delta, Ukraine

Full Text:

PDF

References


Anastasiu, P., Negrean, G., Samoila, C., Memedemin, D., & Dan, C. (2011). A comparative analysis of alien plant species along the Romanian Black Sea coastal area. The role of harbours. Journal of Coastal Conservation, 15(4), 595-606. doi:10.1007/s11852-011-0149-0
CrossrefGoogle Scholar

Baboianu, G. (2016). Danube delta: the transboundary wetlands (Romania and Ukraine). In: C. Finlayson, G. Milton, R. Prentice, N. Davidson (Eds), The wetland book II: distribution, description, and conservation (pp. 1-12), Dordrecht: Springer. doi:10.1007/978-94-007-6173-5_192-2
CrossrefGoogle Scholar

Bianchi, T. S., & Allison, M. A. (2009). Large-river delta-front estuaries as natural "recorders" of global environmental change. Proceedings of the National Academy of Sciences, 106(20), 8085-8092. doi:10.1073/pnas.0812878106
CrossrefPubMedPMCGoogle Scholar

Borer, E. T., Seabloom, E. W., Gruner, D. S., Harpole, W. S., Hillebrand, H., Lind, … & Yang, L. H. (2014). Herbivores and nutrients control grassland plant diversity via light limitation. Nature, 508(7497), 517-520. doi:10.1038/nature13144
CrossrefPubMedGoogle Scholar

Braun-Blanquet, J. (1964). Pflanzensociologie. Grundzuge der Vegetationskunde. Wien: Springer-Verlag. doi:10.1007/978-3-7091-8110-2
CrossrefGoogle Scholar

Čížková, H., Kučera, T., Poulin, B., & Kvĕt, J. (2023). Ecological basis of ecosystem services and management of wetlands dominated by common reed (Phragmites australis): European perspective. Diversity, 15(5), 629. doi:10.3390/d15050629
CrossrefGoogle Scholar

Cozzi, S., Ibáñez, C., Lazar, L., Raimbault, P., & Giani, M. (2019). Flow regime and nutrient-loading trends from the largest south european watersheds: implications for the productivity of Mediterranean and Black Sea's coastal areas. Water, 11(1), 1. doi:10.3390/w11010001
CrossrefGoogle Scholar

de Groot, R. S., Wilson, M. A., & Boumans, R. M. J. (2002). A typology for the classification, description and valuation of ecosystem functions, goods and services. Ecological Economics, 41(3), 393-408. doi:10.1016/s0921-8009(02)00089-7
CrossrefGoogle Scholar

Diachenko, T. M. (2010). Dinamika visshei vodnoi rastitelnosti vodoemov Kiliiskoi delti Dunaya v svyazi s antropogennim vozdeistviem [Dynamics of the aquatic vegetation in water reservoirs of the Kiliya arm of the Danube Delta under anthropogenic impact]. Hydrobiological Journal, 46(5), 30-42. (In Russian)
Google Scholar

Didukh, Ya. P. (Ed.). (2009a). Chervona knyha Ukrainy. Roslynnyi svit [Red Data Book of Ukraine. Plant world]. Kyiv: Globalconsulting. (In Ukrainian)
Google Scholar

Didukh, Ya. P. (Ed.). (2009b). Zelena knyha Ukrainy [Green Data Book of Ukraine]. Kyiv: Alterpress. Retrieved from http://www.irbis-nbuv.gov.ua/E_LIB/PDF/ukr0002042.pdf (In Ukrainian)
Google Scholar

Doroftei, M., Mierlă, M., & Lupu, G. (2011). Approaches to habitat disturbance in the Danube Delta Biosphere Reserve. SCSB Vegetal Biology, 20(1), 45-56.
Google Scholar

Dubyna, D. V., & Shelyag-Sosonko, Yu. R. (1989). Plavni Prichernomorya [Wetlands of the Black Sea]. Kiev: Naukova dumka. (In Russian)
Google Scholar

Dubyna, D. V., Shelyag-Sosonko, Yu. R., Zhmud, O. I., Zhmud, M. E., Dvoretskyi, T. V., Dziuba, T. P., & Tymoshenko, P. A. (2003). Dunaiskyi biosfernyi zapovidnyk. Roslynnyi svit [Danube Biosphere Reserve. The plant world]. Kyiv: Phytosociocenter. (In Ukrainian)
Google Scholar

Dubyna, D. V., Dziuba, T. P., Iemelianova, S. М., Bagrikova, N. O., Borysova, O. V., Borsukevych, L. M., ... & Iakushenko, D. M. (2019). Prodromus roslynnosti Ukrainy [Prodrome of the vegetation of Ukraine]. Kyiv: Naukova dumka. Retrieved from https://geobot.org.ua/files/publication/2106/prodr_roslinn_ukr_2019.pdf (In Ukrainian)
Google Scholar

Dvoretsky, T. V. (1999). The influence of mowing on the vegetation of the salt meadows in Dunaisky biosphere reserve. Ukrainian Phytosociological Collection. Series С. Phytoecology, 1(15), 68-78. Retrieved from https://geobot.org.ua/files/publication/664/1999_115.pdf (In Ukrainian)
Google Scholar

Dvoretskyi, T. V. (2002). Changing of resources and morphometric of Phragmites australis (Cav.) Trin. ex Steud. under anthropogenous impact in the Danube delta. Ukrainian Botanical Journal, 59(5), 547-553. (In Ukrainian)
Google Scholar

Dvoretskyi, T. V. (2004). Assessment of of mowing influence communities of the class Juncetea maritimi Br.-Bl. et al. in the Kilian arm delta of the Danube. Ukrainian Botanical Journal, 61(4), 38-48. (In Ukrainian)
Google Scholar

Godeanu, M. (1976). Consideraţii generale asupra principalelor asociaţii acvatice şi palustre din Delta Dunării în condiţii naturale şi amenajate. Peuce, 5, 57-99.
Google Scholar

Golubtsov, O. G., Biatov, A. P., Seliverstov, O. Yu., & Sadogurska, S. S. (2018). Voda blyzko: pidvyshchennia rivnia moria v Ukraini vnaslidok zminy klimatu [The water is near: the rise of sea level in Ukraine as the result of climate change]. "Ecodia" Center for Environmental Initiatives. Kyiv: Print Qiuck. Retrieved from http://ecoaction.org.ua/voda-blyzko-report.html (In Ukrainian)
Google Scholar

Ignar, S., & Grygoruk, M. (2015). Wetlands and water framework directive: protection, management and climate change. In: S. Ignar, & M. Grygoruk (Eds.), Wetlands and water framework directive (pp. 1-7). Cham: Springer. doi:10.1007/978-3-319-13764-3_1
CrossrefGoogle Scholar

Izmail district. (2011). In: S. I. Mazur, V. V. Nedashkivskyi, & D. G. Peychev. Encyclopedia of Modern Ukraine [Electronic resource]. National Academy of Sciences of Ukraine, Institute of Encyclopedic Research of the National Academy of Sciences of Ukraine, Kyiv. Retrieved from https://esu.com.ua/article-13824 (In Ukrainian)
Google Scholar

Klokov, V. M., & Diachenko, T. M. (1993). Vysshaya vodnaya rastitelnost [Higher aquatic vegetation]. In: V. D. Romanenko (Ed.), Gidroekologiya ukrainskogo uchastka Dunaya i sopredelnykh vodoyemov [Hydroecology of the Ukrainian section of the Danube and adjacent reservoirs] (pp. 41-77). Kiev: Naukova dumka. (In Russian)
Google Scholar

Kulik, M., Bochniak, A., Chabuz, W., Żółkiewski, P., & Rysiak, A. (2023). Is grazing good for wet meadows? Vegetation changes caused by white-backed cattle. Agriculture, 13(2), 261. doi:10.3390/agriculture13020261
CrossrefGoogle Scholar

Lazar, L., Rodino, S., Pop, R., Tiller, R., D'Haese, N., Viaene, P., & De Kok, J.-L. (2022). Sustainable development scenarios in the Danube Delta - a pilot methodology for decision makers. Water, 14(21), 3484. doi:10.3390/w14213484
CrossrefGoogle Scholar

Leandru, V., Pârvu, E., & Petrescu, I. (1960). Vegetaţia naturală şi tipurile de pădure. In: Cercetări forestiere şi cinegetice în Delta Dunării (pp. 57-70), Bucureşti: Editura Agro-Silvică.
Google Scholar

Loucks, D. P. (2019). Developed river deltas: are they sustainable? Environmental Research Letters, 14(11), 113004. doi:10.1088/1748-9326/ab4165
CrossrefGoogle Scholar

Mosyakin, S. L., & Fedoronchuk, M. M. (1999). Vascular plants of Ukraine. A nomenclatural hecklist. Kiev: M. G. Kholodny Institute of Botany, National Academy of Sciences of Ukraine.
Google Scholar

National Atlas of Ukraine (2007). Kyiv: Kartografiya. (In Ukrainian)
Google Scholar

Oosterberg, W., Staras, M., Bogdan, L., Buijse, A. D., Constantinescu, A., Coops, H., Hanganu, J., Ibelings, B. W., Menting, G. A. M., Nãvodaru, I., & Török, L. (2000). Ecological gradients in the Danube Delta lakes: present state and man-induced changes (pp. 95-109). Lelystad, Netherlands: RIZA rapport 2000.015.
Google Scholar

Otfinowski, R., & Coffey, V. (2022). Grazing effects on the composition, diversity, and function of wet meadow grasslands in Manitoba, Canada. Rangeland Ecology & Management, 80, 78-86. doi:10.1016/j.rama.2021.10.002
CrossrefGoogle Scholar

Patel, K., Chaurasia, M., InduTripathi, & Nagar, Sh. (2021). Wetland conservation and restoration. In: Sh. Sanjeev & S. Pardeep (Eds.), Wetlands conservation: current challenges and cuture ctrategies (pp. 272-283). John Wiley & Sons Ltd. doi:10.1002/9781119692621.ch13
CrossrefGoogle Scholar

Perillo, G., Wolanski, E., Cahoon, D. R., & Hopkinson, C. S. (Eds.). (2019). Coastal wetlands: an integrated ecosystem approach. Amsterdam: Elsevier. doi:10.1016/c2015-0-04343-x
CrossrefGoogle Scholar

Petrişor, A.-I. (2016). Assessment of the long-term effects of global changes within the Romanian natural protected areas. International Journal of Conservation Science, 7(3), 759-770.
Google Scholar

Program of integrated development of the Ukrainian Danube region for 2004-2010. Resolution of the Cabinet of Ministers of Ukraine dated March 31, 2004, N 428. Retrieved from https://www.kmu.gov.ua/npas/5506357

Schneider-Binder, E. (2018). Aquatic macrophyte communities of the Gorgova-Isac-Uzlina Area (Danube Delta, Romania). Transylvanian Review of Systematical and Ecological Research, 20(3), 39-56. doi:10.2478/trser-2018-0018
CrossrefGoogle Scholar

Stoica, C., Stanescu, E., Lucaciu, I., Gheorghe, S., & Nicolau, M. (2013). Influence of global change on biological assemblages in the Danube Delta. Journal of Environmental Protection and Ecology, 14(2), 468-479.
Google Scholar

Strat, D. (2013). Human induced alterations in plant biodiversity of Sărăturile strand plain - Danube Delta. Universităţii din Oradea - Seria Geografie, 23, 348-354.
Google Scholar

Syvitski, J. P. M., Kettner, A. J., Overeem, I., Hutton, E. W. H., Hannon, M. T., Brakenridge, G. R., Day, J., Vörösmarty, C., Saito, Y., Giosan, L., & Nicholls, R. J. (2009). Sinking deltas due to human activities. Nature Geoscience, 2(10), 681-686. doi:10.1038/ngeo629
CrossrefGoogle Scholar

Syvitski, J. P. M., & Saito, Y. (2007). Morphodynamics of deltas under the influence of humans. Global and Planetary Change, 57(3-4), 261-282. doi:10.1016/j.gloplacha.2006.12.001
CrossrefGoogle Scholar

Tarnavschi, D. (1970). Scurtă prezentare a florei și vegetației din Delta Dunării. Communicari de Botanica, 142-150.

Tkachenko, V. S. (1984). General characteristics of the vegetation of the Lower Dniester floodplains and the forecast of its changes. Ukrainian Botanical Journal, 41(2), 16-21. (In Ukrainian)
Google Scholar

Trifanov, C., Romanescu, G., Tudor, M., Grigoras, I., Doroftei, M., Silviu, C., & Mierla, M. (2018). Anthropisation degree of coastal vegetation areas in Danube Delta biosphere reserve. Journal of Environmental Protection and Ecology, 19(2), 539-546.
Google Scholar

Tucker, G., Kettunen, M., McConville, A., & Cottee-Jones, E. (2010). Valuing and conserving ecosystem services: a scoping case study in the Danube basin. Report prepared for WWF. London: Institute for European Environmental Policy.
Google Scholar

You, X., Liu, J., & Zhang, L. (2015). Ecological modeling of riparian vegetation under disturbances: a review. Ecological Modelling, 318, 293-300. doi:10.1016/j.ecolmodel.2015.07.002
CrossrefGoogle Scholar

Zaitsev, Y. P. (1998). The bluest in the world. New York: United Nations Publishing House. (In Russian)
Google Scholar

Zaitsev, Yu. P., Aleksandrov, B. G., Minicheva, G. G., Nikulin, V. V., & Garkavaya,G. P. (2006). Severo-zapadnaya chast Chernogo morya: biologiya i ekologiya [Northwestern part of the Black Sea: biology and ecology]. Kyiv: Naukova dumka. (In Russian)
Google Scholar

Zhmud ,O. I. (1999). Trends of paschal changes in the vegetation cover of the Danube biosphere reserve. Ukrainian Phytosociological Collection, Ser. А, 3, 102-107. (In Ukrainian)
Google Scholar


Refbacks

  • There are currently no refbacks.


Copyright (c) 2025 Liubov Borsukevych, Dmytro Dubyna, Tetiana Dziuba

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.