PHOTOSYNTHETIC ACTIVITY AND PROTECTIVE REACTIONS OF MOSSES IN FOREST ECOSYSTEMS OF THE UKRAINIAN ROZTOCHIA UNDER CHANGING ECOLOGICAL CONDITIONS

Natalia Kyyak, Olha Теrek, Oksana Baik, Roman Sokhanchak


DOI: http://dx.doi.org/10.30970/sbi.1903.842

Abstract


Background. The photosynthetic activity of mosses has not been studied sufficiently, in contrast to vascular plants. Taking into account the specifics of the moss gametophyte organization (poikilohydricity, absence of epidermis, stomata, cuticle), it is relevant to perform a comparative analysis of photosynthetic activity and flavonoid-based antioxidant systems in endohydric and ectohydric moss species in relation to microecological gradients of moisture and temperature in forest ecosystems of the Ukrainian Roztochia.
Materials and Methods. The objects of the research were forest endohydric mosses Polytrichum formosum Hedw., Atrichum undulatum (Hedw.) P. Beauv. and ruderal ectohydric moss Ceratodon purpureus (Hedw.) Вrid. from experimental plots of forest coenoses that differed in environmental conditions. The content of photosynthetic pigments, Rubisco activity, photosynthesis intensity, antioxidant activity and flavonoids content were determined using standard methods.
Results. Significant plasticity of the mosses’ photosynthetic apparatus (chlorophylls and carotenoids content, Chl a/b ratio) was noted, which indicates an adaptation of bryophytes to changes in water and temperature regimes as well as light intensity. It was shown that the carboxylase activity of Rubisco is an indicator of the photosynthesis intensity of mosses and differs in endohydric and ectohydric species. Increasing antioxidant activity in moss cells relative to the environmental conditions was studied. The content of flavonoids and their absorption spectra in the moss shoots were studied.
Conclusions. Under unfavorable environmental conditions, an increase in the content of carotenoids in moss shoots, a decrease in the proportion of chlorophyll a in the total pool of chlorophylls to 52–56 %, as well as an increase in the proportion of chloro­phyll b, was established. The higher intensity of photosynthesis in endohydric mosses Atrichum undulatum and Polytrichum formosum was ensured by a 25–53 % higher and more stable Rubisco activity, compared to the ectohydric moss Ceratodon purpureus. Under conditions of moisture deficiency, an increase in antioxidant activity by 27–30 % and in the flavonoid content by 22–48 % in moss shoots was noted. In Atrichum undulatum gametophores, a 3.5–4.0 times higher antiradical activity was observed, indicating prospects for its further research. Analysis of absorption spectra of flavonoids extracts from P. formosum and C. purpureus showed the presence of flavonols and anthocyanins.


Keywords


photosynthesis, Rubisco, antioxidant activity, flavonoids, mosses, forest ecosystems

Full Text:

PDF

References


Ahmad, P., Jaleel, C. A., Salem, M. A., Nabi, G., & Sharma S. (2010). Roles of enzymatic and nonenzymatic antioxidants in plants during abiotic stress. Critical Reviews in Biotechnology, 30(3), 161-175. doi:10.3109/07388550903524243
CrossrefPubMedGoogle Scholar

Antala, M., Abdelmajeed, A. Y. A., Stróżecki, M., Krzesiński, W., Juszczak, R., & Rastogi, A. (2024). Photosynthetic responses of peat moss (Sphagnum spp.) and bog cranberry (Vaccinium oxycoccos L.) to spring warming. Plants, 13(22), 3246. doi:10.3390/plants13223246
CrossrefPubMedPMCGoogle Scholar

Brand-Williams, W., Cuvelier, M. E., & Berset, C. (1995). Use of a free radical method to evaluate antioxidant activity. LWT - Food Science and Technology, 28(1), 25-30. doi:10.1016/S0023-6438(95)80008-5
CrossrefGoogle Scholar

Bradford, M. M. (1976). A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Analytical Biochemistry, 7(72), 248-254. doi:10.1016/0003-2697(76)90527-3
CrossrefPubMedGoogle Scholar

Coe, K. K., Howard, N. B., Slate, M. L., Bowker, M. A., Mishler, B. D., Butler, R., Greenwood, J., & Stark, L. R. (2019). Morphological and physiological traits in relation to carbon balance in a diverse clade of dryland mosses. Plant, Cell and Environment, 42, 3140-3151. doi:10.1111/pce.13613
CrossrefPubMedGoogle Scholar

Ćosić, M. V., Mišić, D. M., Jakovljević, K. M., Giba, Z. S., Sabovljević A. D., Sabovljević, M. S., & Vujičić, M. M. (2023). Analysis of the qualitative and quantitative content of the phenolic compounds of selected moss species under NaCl stress. Molecules, 28(4), 1794. doi:10.3390/molecules28041794
CrossrefPubMedPMCGoogle Scholar

Davies, K. M., Jibran, R., Zhou, Y., Albert, N. W., Brummell, D. A., Jordan, B. R., Bowman, J. L., & Schwinn, K. E. (2020). The evolution of flavonoid biosynthesis: a bryophyte perspective. Frontiers in Plant Science, 11, 7. doi:10.3389/fpls.2020.00007
CrossrefPubMedPMCGoogle Scholar

Cianciullo, P., Maresca, V., Sorbo, S., & Basile, A. (2022). Antioxidant and antibacterial properties of extracts and bioactive compounds in bryophytes. Applied Sciences, 12(1), 160. doi:10.3390/app12010160
CrossrefGoogle Scholar

Glime, J. M. (2019). Bryophyte ecology. Vol. 1. Physiological ecology. Ebook sponsored by Michigan Techno-logical University and the International Association of Bryologists. Retrieved from https://digitalcommons.mtu.edu/bryophyte-ecology1
Google Scholar

Hanson, D. T., & Rice, S. K. (Eds.). (2014). Photosynthesis in bryophytes and early land plants (Vol. 37). Dordrecht, Netherlands: Springer. doi:10.1007/978-94-007-6988-5
CrossrefGoogle Scholar

Holm, G. (1954). Chlorophyll mutations in barley. Acta Agriculturae Scandinavica, 4(1), 457-471. doi:10.1080/00015125409439955
CrossrefGoogle Scholar

Kiriziy, D. A., & Stasyk, O. O. (2022). Effects of drought and high temperature on physiological and biochemical processes, and productivity of plants. Plant Physiology and Genetics, 54(2), 95-122. doi:10.15407/frg2022.02.095 (In Ukrainian)
CrossrefGoogle Scholar

Kyyak, N. Y. (2022). Metabolism of carbohydrates and activity of the antioxidant system in mosses on the post-technogenic salinized territory. Regulatory Mechanisms in Biosystems, 139(2), 189-196. doi:10.15421/022224
CrossrefGoogle Scholar

Lilley, R. McC., & Walker, D. A. (1974). An improved spectrophotometric assay for ribulosebisphosphate carboxylase. Biochimica et Biophysica Acta (BBA) - Enzymology, 358(1), 226-229. doi:10.1016/0005-2744(74)90274-5
CrossrefGoogle Scholar

Lobachevska, O. V., Rabyk, I. V., & Karpinetz, L. I. (2023). Epigeic bryophytes of the forest ecosystems, peculiarities of their water exchange and productivity depending on the ecological locality conditions. Chornomorski Botanical Journal, 19(1), 187-199. doi:10.32999/ksu1990-553X/2023-19-2-3 (In Ukrainian)
CrossrefGoogle Scholar

Marschall, M., & Proctor, M. (2004). Are bryophytes shade plants? Photosynthetic light responses and proportions of chlorophyll a, chlorophyll b and total carotenoids. Annals of Botany, 94(4), 593-603. doi:10.1093/aob/mch178
CrossrefPubMedPMCGoogle Scholar

Nikolaichuk, V. I., Belchghazi, V. Y., & Bilyk, P. P. (2000). Spetspraktykum z fiziolohii roslyn i biotekhnolohii [Specialized Practicum in Plant Physiology and Biochemistry]. Uzhhorod: VAT Patent. (In Ukrainian)

Pękal, A., & Pyrzynska, K. (2014). Evaluation of aluminium complexation reaction for flavonoid content assay. Food Analytical Methods, 7, 1776-1782. doi:10.1007/s12161-014-9814-x
CrossrefGoogle Scholar

Perera-Castro, A. V., Waterman, M. J., Robinson, S. A., & Flexas, J. (2022). Limitations to photosynthesis in bryophytes: certainties and uncertainties regarding methodology. Journal of Experimental Botany, 73(13), 4592-4604. doi:10.1093/jxb/erac189
CrossrefPubMedGoogle Scholar

Perera-Castro, A. V., Flexas, J., González-Rodríguez, Á. M., & Fernández-Marín, B. (2021). Photosynthesis on the edge: photoinhibition, desiccation and freezing tolerance of Antarctic bryophytes. Photosynthesis Researches, 149(1-2), 135-153. doi:10.1007/s11120-020-00785-0
CrossrefGoogle Scholar

Sabovljević, M., & Sabovljević, A. (Eds.). (2020). Bryophytes. London: IntechOpen. doi:10.5772/intechopen.73787
Crossref

Siwach, A., Kaushal, S., & Baishya, R. (2021). Effect of Mosses on physical and chemical properties of soil in temperate forests of Garhwal Himalayas. Journal of Tropical Ecology, 37, 1-10. doi:10.1017/S0266467421000249
CrossrefGoogle Scholar

Smolińska-Kondla, D., Zych, M., Ramos, P., Wacławek, S., & Stebel, A. (2022). Antioxidant potential of various extracts from 5 common European mosses and its correlation with phenolic compounds. Herba Polonica, 68(2), 54-68. doi:10.2478/hepo-2022-0014
CrossrefGoogle Scholar

Wettstein, D. (1957). Chlorophyll-letale und der submikroskopische Formwechsel der Plastiden. Experimental Cell Research, 12(3), 427-506. doi:10.1016/0014-4827(57)90165-9
CrossrefPubMedGoogle Scholar

Wolski, G. J., Sadowska, B., Fol, M., Podsędek, A., Kajszczak, D., & Kobylińska, A. (2021). Cytotoxicity, antimicrobial and antioxidant activities of mosses obtained from open habitats. PLoS One, 16(9), e0257479. doi:10.1371/journal.pone.0257479
CrossrefPubMedPMCGoogle Scholar

Zandalinas, S. I., Mittler, R., Balfagon, D., Arbona, V. & Gomez-Cadenas, A. (2018). Plant adaptations to the combination of drought and high temperatures. Physiologia Plantarum, 162(1), 2-12. doi:10.1111/ppl.12540
CrossrefPubMedGoogle Scholar


Refbacks

  • There are currently no refbacks.


Copyright (c) 2025 Natalia Kyyak, Olha Теrek, Oksana Baik, Roman Sokhanchak

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.