THE FUTURE OF THE KAKHOVKA RESERVOIR AFTER ECOCIDE: AFFORESTATION AND ECOSYSTEM SERVICE RECOVERY THROUGH EMERGENT WILLOW AND POPLAR COMMUNITIES

Hanna Tutova, Оlena Lisovets, Olga Kunakh, Oleksandr Zhukov


DOI: http://dx.doi.org/10.30970/sbi.1903.838

Abstract


Background. The destruction of the Kakhovka Dam during Russia’s invasion of Ukraine triggered one of the most severe environmental disasters in Eastern Europe in recent decades. The abrupt draining of the reservoir eliminated essential aquatic habitats, resulting in a collapse of aquatic biodiversity, significant disruption of hydrological cycles, and widespread contamination. The subsequent colonization of the exposed flats, predominantly by two tree species, fails to compensate for the lost diversity of the former aquatic ecosystem. While the abrupt drainage resulted in the degradation of aquatic habitats and posed long-term public health risks, the newly exposed terrest­rial substrates have also facilitated spontaneous ecological succession. The most prominent colonisers of the dried-out bottom are hybrid willows (Salix × rubens) and black poplars (Populus nigra), which have rapidly formed dense pioneer stands. These emergent ecosystems now play a critical role in carbon sequestration, soil stabilisation, and microclimate regulation. Understanding the dynamics and ecosystem services of these formations is essential for developing sustainable restoration strategies for the post-war landscape.
Materials and Methods. Field surveys were conducted in April 2025 on the exposed bed of the former Kakhovka Reservoir, near Khortytsia Island. A total of 158 plots were evaluated in terms of tree presence, morphometric parameters, and environmental conditions. The height and diameter of Salix × rubens and Populus nigra trees were measured, and their biomass was estimated using geometric models. Soil pH, temperature, moisture and electrical conductivity were recorded at each plot. Ecological niche parame­ters were calculated using generalised additive models (GAMs). The carbon sequestration potential was estimated based on total biomass and converted into a monetary value using EU ETS carbon pricing.
Results and Discussion. Salix × rubens and Populus nigra exhibited high colonization rates on the exposed reservoir bed, establishing pioneer stands that exhibited distinct spatial patterns. Salix × rubens dominated moist, concave microsites, whereas Populus nigra was found on elevated, drier areas. Analysis of generalized additive models indicated that stands of Salix × rubens develop on soils with moderately acidic to near-neutral pH (optimum ≈ 7.25; tolerance range 6.43–8.03), elevated moisture (optimum ≈ 10.42 %), warmer temperatures (optimum ≈ 17.82 °C), and moderate electrical conductivity (optimum ≈ 0.38 dS m¹), whereas Populus nigra exhibits broader ecological plasticity: pH optimum ≈ 7.12 (tolerance 3.83–7.67), lower moisture (≈ 5.98 %), cooler conditions (≈ 12.80 °C), and low electrical conductivity (≈ 0.03 dS m¹). The species exhibi­ted significant differences in ecological tolerance and biomass accumulation. Allometric models revealed distinct growth strategies, with P. nigra developing thicker stems. The maximum carbon sequestration potential was observed at intermediate stand densities, with P. nigra providing a greater economic value per hectare. These findings emphasise the ecological significance of spontaneous afforestation and advocate for nature-based restoration methods over the technical reconstruction of reservoirs.
Conclusion. The spontaneous afforestation of the former Kakhovka Reservoir bottom by Salix × rubens and Populus nigra demonstrates the strong regenerative capacity of floodplain ecosystems. These pioneer stands provide essential ecosystem services, including carbon sequestration, soil stabilization, and habitat provision. Species-specific ecological preferences and growth patterns determine their spatial distribution and carbon offset potential. The estimated economic value of early-stage carbon capture is considerable, particularly for P. nigra. These findings support the conservation of emergent willow-poplar communities and emphasize the importance of integrating nature-based solutions into post-war landscape planning instead of pursuing technical restoration of the destroyed reservoir infrastructure.


Keywords


Kakhovka Reservoir, ecocide, willow-poplar forests, Salix × rubens, Populus nigra, spontaneous succession, carbon sequestration, ecosystem services, floodplain restoration

Full Text:

PDF

References


Babin, B., Plotnikov, O., & Prykhodko, A. (2023). Damage to the maritime ecosystems from the destruction of the Kakhovka dam and international mechanisms of its assessment. Lex Portus, 9(5), 23-32. doi:10.26886/2524-101x.9.5.2023.2
CrossrefGoogle Scholar

Branch, A., & Minkova, L. (2023). Ecocide, the anthropocene, and the international criminal court. Ethics & International Affairs, 37(1), 51-79. doi:10.1017/s0892679423000059
CrossrefGoogle Scholar

Chen, B., An, J., Huang, Y., Chen, X., Wu, S., Lin, C., & Gong, P. (2024). Multifaceted impacts of Ukraine's Kakhovka Dam destruction. Science Bulletin, 69(11), 1642-1646. doi:10.1016/j.scib.2024.03.038
CrossrefPubMedGoogle Scholar

Chernogor, L., Nekos, A., Titenko, G., & Chornohor, L. (2024). Ecological consequences of the catastrophic destruction of the Kakhovka reservoir dam. Visnyk of V. N. Karazin Kharkiv National University, Series Geology. Geography. Ecology, 61, 399-410. doi:10.26565/2410-7360-2024-61-32
CrossrefGoogle Scholar

De Cock, K., Lybeer, B., Vander Mijnsbrugge, K., Zwaenepoel, A., Peteghem, P., Quataert, P., Breyne, P., Goetghebeur, P., & Slycken, J. (2003). Diversity of the willow complex Salix alba-S. x rubens-S. fragilis. Silvae Genetica, 52, 148-153.
Google Scholar

Didukh, Y. P., Kuzemko, A. A., Khodosovtsev, O. E., Chusova, O. O., Borsukevych, L. M., Skobel, N. O., Mykhailiuk, T. I., & Moisienko, I. I. (2024). First year of floodplain forest restoration at the bottom of the former Kakhovka reservoir. Chornomorski Botanical Journal, 20(3), 305-326. doi:10.32999/ksu1990-553x/2024-20-3-5 (In Ukrainian)
CrossrefGoogle Scholar

Eggleston, H. S., Buendia, L., Miwa, K., Ngara, T., & Tanabe, K. (2006). 2006 IPCC Guidelines for National Greenhouse Gas Inventories. Volume 4: Agriculture, Forestry and Other Land Use. Institute for Global Environmental Strategies (IGES), Hayama, Japan. Retrieved from https://www.ipcc-nggip.iges.or.jp/public/2006gl/vol4.html
Google Scholar

Leal Filho, W., Fedoruk, M., Paulino Pires Eustachio, J. H., Splodytel, A., Smaliychuk, A., & Szynkowska-Jóźwik, M. I. (2024a). The environment as the first victim: the impacts of the war on the preservation areas in Ukraine. Journal of Environmental Management, 364, 121399. doi:10.1016/j.jenvman.2024.121399
CrossrefPubMedGoogle Scholar

Leal Filho, W., Eustachio, J. H. P. P., Fedoruk, M., & Lisovska, T. (2024b). War in Ukraine: an overview of environmental impacts and consequences for human health. Frontiers in Sustainable Resource Management, 3. doi:10.3389/fsrma.2024.1423444
CrossrefGoogle Scholar

Gan, R. K., Alsua, C., Aregay, A., Assaf, D., Bruni, E., & Arcos González, P. (2024). Exploring cascading disaster risk during complex emergencies: chemical industry disaster risk assessment in the aftermath of the Kakhovka dam bombing in Ukraine. Disaster Medicine and Public Health Preparedness, 18, e62. doi:10.1017/dmp.2024.41
CrossrefPubMedGoogle Scholar

Gavrysh, K. (2024). Prosecuting individuals for environmental harm in the armed conflict between Russia and Ukraine: the case of destruction of the Kakhovka Dam. Polish Yearbook of International Law, 43, 261-283. doi:10.24425/pyil.2024.152301
CrossrefGoogle Scholar

Gleick, P., Vyshnevskyi, V., & Shevchuk, S. (2023). Rivers and water systems as weapons and casualties of the Russia-Ukraine war. Earth's Future, 11(10). doi:10.1029/2023ef003910
CrossrefGoogle Scholar

Guilloy, H., González, E., Muller, E., Hughes, F. M. R., & Barsoum, N. (2011). Abrupt drops in water table level influence the development of Populus nigra and Salix alba seedlings of different ages. Wetlands, 31(6), 1249-1261. doi:10.1007/s13157-011-0238-8
CrossrefGoogle Scholar

Hryhorczuk, D., Levy, B. S., Prodanchuk, M., Kravchuk, O., Bubalo, N., Hryhorczuk, A., & Erickson, T. B. (2024). The environmental health impacts of Russia's war on Ukraine. Journal of Occupational Medicine and Toxicology, 19(1), 1. doi:10.1186/s12995-023-00398-y
CrossrefPubMedPMCGoogle Scholar

Husain, H. J., Wang, X., Pirasteh, S., Mafi-Gholami, D., Chouhan, B., Khan, M. L., & Gheisari, M. (2024). Review and assessment of the potential restoration of ecosystem services through the implementation of the biodiversity management plans for SDG-15 localization. Heliyon, 10(8), e29877. doi:10.1016/j.heliyon.2024.e29877
CrossrefPubMedPMCGoogle Scholar

Independent expert panel for the legal definition of ecocide. (2021). Independent expert panel for the legal definition of ecocide: commentary and core text. Amsterdam. Retrieved from https://www.stopecocide.earth/legal-definition
Google Scholar

Keenan, R. J., Pozza, G., & Fitzsimons, J. A. (2019). Ecosystem services in environmental policy: barriers and opportunities for increased adoption. Ecosystem Services, 38, 100943. doi:10.1016/j.ecoser.2019.100943
CrossrefGoogle Scholar

Khodakarami, L., Pourmanafi, S., Soffianian, A. R., & Lotfi, A. (2022). Modeling spatial distribution of carbon sequestration, CO2 absorption, and O2 production in an urban area: integrating ground-based data, remote sensing technique, and GWR model. Earth and Space Science, 9(7). doi:10.1029/2022ea002261
CrossrefGoogle Scholar

Kvach, Y., Stepien, C. A., Minicheva, G. G., & Tkachenko, P. (2025). Biodiversity effects of the Russia-Ukraine War and the Kakhovka Dam destruction: ecological consequences and predictions for marine, estuarine, and freshwater communities in the northern Black Sea. Ecological Processes, 14(1), 22. doi:10.1186/s13717-025-00577-1
CrossrefGoogle Scholar

Lavrenko, S., Ladychuk, D., Lavrenko, N., & Ladychuk, V. (2024). Strategic ways of post-war restoration of irrigated agriculture in the southern steppe of Ukraine. In: L. Kuzmych (Ed.), Sustainable soil and water management practices for agricultural security (pp. 379-406). Global Scientific Publishing. doi:10.4018/979-8-3693-8307-0.ch014
CrossrefGoogle Scholar

Malysheva, N., & Hurova, A. (2024). Environmental consequences of the Kakhovka H.P.P. destruction in Ukraine: challenge and opportunity for international justice. Journal of Environmental Law & Policy, 04(01), 84-104. doi:10.33002/jelp040104
CrossrefGoogle Scholar

Maruf, S. (2024). Environmental damage in Ukraine as environmental war crime under the Rome Statute. Journal of International Criminal Justice, 22(1), 99-126. doi:10.1093/jicj/mqae004
CrossrefGoogle Scholar

Mengist, W., Soromessa, T., & Feyisa, G. L. (2020). A global view of regulatory ecosystem services: existed knowledge, trends, and research gaps. Ecological Processes, 9(1), 40. doi:10.1186/s13717-020-00241-w
CrossrefGoogle Scholar

Mezeli, M. M., Page, S., George, T. S., Neilson, R., Mead, A., Blackwell, M. S. A., & Haygarth, P. M. (2020). Using a meta-analysis approach to understand complexity in soil biodiversity and phosphorus acquisition in plants. Soil Biology and Biochemistry, 142, 107695. doi:10.1016/j.soilbio.2019.107695
CrossrefGoogle Scholar

Novakovska, I., Belousova, N., & Hunko, L. (2025). Land degradation in Ukraine as a result of military operations. Acta Scientiarum Polonorum Administratio Locorum, 24(1), 129-145. doi:10.31648/aspal.9788
CrossrefGoogle Scholar

Pichura, V., Potravka, L., Dudiak, N., & Bahinskyi, O. (2024a). Natural and climatic transformation of the Kakhovka reservoir after the destruction of the dam. Journal of Ecological Engineering, 25(7), 82-104. doi:10.12911/22998993/187961
CrossrefGoogle Scholar

Pichura, V., Potravka, L., Dudiak, N., & Hyrlya, L. (2024b). The impact of the russian armed aggression on the condition of the water area of the Dnipro-Buh estuary system. Ecological Engineering & Environmental Technology, 25(11), 58-82. doi:10.12912/27197050/192154
CrossrefGoogle Scholar

R Core Team. (2023). No Title. R: A Language and Environment for Statistical Computing (4.3.1), R Foundati. Retrieved from https://www.r-project.org

Sanina, I. V., & Lyuta, N. G. (2023). Environmental consequences of the Kakhovka hydroelectric power plant dam explosion and ways to improve water supply to the population. Mineral Resources of Ukraine, 2, 50-55. doi:10.31996/mru.2023.2.50-55 (In Ukrainian)
CrossrefGoogle Scholar

Shumilova, O., Sukhodolov, A., Osadcha, N., Oreshchenko, A., Constantinescu, G., Afanasyev, S., ... & Grossart, H.-P. (2025). Environmental effects of the Kakhovka Dam destruction by warfare in Ukraine. Science, 387(6739), 1181-1186. doi:10.1126/science.adn8655
CrossrefPubMedGoogle Scholar

Trokhymenko, G., Magas, N., Shumilova, O., & Klochko, V. (2023). Analysis of surface water quality indicators in the Dnipro-bug estuary region in the first months after the destruction of the Kakhovka hydroelectric power station dam. Environmental Problems, 8(4), 231-240. doi:10.23939/ep2023.04.231
CrossrefGoogle Scholar

Tutova, H., Ruchiy, V., Khrystov, O., Lisovets, O., Kunakh, O., & Zhukov, O. (2025). Influence of morphology and functional properties of floodplain water bodies on species diversity of macrophyte communities. Regulatory Mechanisms in Biosystems, 33(1), e25012. doi:10.15421/0225012
CrossrefGoogle Scholar

van der Veen, B., Hui, F. K. C., Hovstad, K. A., Solbu, E. B., & O'Hara, R. B. (2021). Model-based ordination for species with unequal niche widths. Methods in Ecology and Evolution, 12(7), 1288-1300. doi:10.1111/2041-210x.13595
CrossrefGoogle Scholar

Vyshnevskyi, V., & Shevchuk, S. (2024a). The destruction of the Kakhovka dam and the future of the Kakhovske reservoir. International Journal of Environmental Studies, 81(1), 275-288. doi:10.1080/00207233.2024.2320033
CrossrefGoogle Scholar

Vyshnevskyi, V. І., & Shevchuk, S. А. (2024b). Natural processes in the area of the former Kakhovske reservoir after the destruction of the Kakhovka HPP. Journal of Landscape Ecology, 17(2), 147-164. doi:10.2478/jlecol-2024-0014
CrossrefGoogle Scholar

Vyshnevskyi, V. І., & Shevchuk, S. А. (2024c). The impact of the Kakhovka dam destruction on the water temperature in the lower reaches of the Dnipro river and the former Kakhovske Reservoir. Journal of Landscape Ecology, 17(2), 1-17. doi:10.2478/jlecol-2024-0008
CrossrefGoogle Scholar

Wood, S. N. (2011). Fast stable restricted maximum likelihood and marginal likelihood estimation of semiparametric generalized linear models. Journal of the Royal Statistical Society Series B: Statistical Methodology, 73(1), 3-36. doi:10.1111/j.1467-9868.2010.00749.x
CrossrefGoogle Scholar

Ximenes, F. A., Gardner, W. D., & Kathuria, A. (2008). Proportion of above-ground biomass in commercial logs and residues following the harvest of five commercial forest species in Australia. Forest Ecology and Management, 256(3), 335-346. doi:10.1016/j.foreco.2008.04.037
CrossrefGoogle Scholar

Xu, H., Barbot, S., & Wang, T. (2024). Remote sensing through the fog of war: Infrastructure damage and environmental change during the Russian-Ukrainian conflict revealed by open-access data. Natural Hazards Research, 4(1), 1-7. doi:10.1016/j.nhres.2024.01.006
CrossrefGoogle Scholar

Yang, Q., Shen, X., He, K., Zhang, Q., Helfrich, S., Straka, W., Kellndorfer, J. M., & Anagnostou, E. N. (2024). Pre-failure operational anomalies of the Kakhovka Dam revealed by satellite data. Communications Earth & Environment, 5(1), 230. doi:10.1038/s43247-024-01397-5
CrossrefGoogle Scholar

Yin, C., Zhao, W., Ye, J., Muroki, M., & Pereira, P. (2023). Ecosystem carbon sequestration service supports the Sustainable Development Goals progress. Journal of Environmental Management, 330, 117155. doi:10.1016/j.jenvman.2022.117155
CrossrefPubMedGoogle Scholar


Refbacks

  • There are currently no refbacks.


Copyright (c) 2025 Hanna Tutova, Оlena Lisovets, Olga Kunakh, Oleksandr Zhukov

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.