SODIUM GLUTAMATE ALTERS LIFESPAN, STRESS RESISTANCE AND METABOLISM IN DROSOPHILA
DOI: http://dx.doi.org/10.30970/sbi.1903.845
Abstract
Background. Sodium glutamate (SG) is a widely used flavor enhancer that is regularly consumed by many people worldwide. Despite its widespread use, the safety of SG remains a subject of debate, as existing experimental studies report conflicting results. Additional research is necessary to better understand its biological effects. In this study, we investigated the impact of SG consumption on lifespan, stress resistance, feeding behavior, and metabolism in the fruit fly Drosophila melanogaster.
Materials and Methods. To assess physiological and biochemical parameters, flies were reared for 15 days on a control diet or food supplemented with SG. Lifespan, resistance to oxidative stress and starvation, and feeding rate were assessed. In addition, we analyzed the levels of key metabolites, including glucose, glycogen, and triacylglycerides, to evaluate the metabolic consequences of SG intake.
Results and Discussion. We showed that consumption of food supplemented with a low concentration of SG (0.1%) increased the lifespan of male flies. However, high concentrations of dietary SG decreased the survival of flies of both sexes. Consumption of SG increased resistance to oxidative stress in females, whereas it decreased resistance to starvation. SG leads to higher overall food consumption in flies if the level of dietary SG is low. Consumption of food supplemented with SG affected carbohydrate and lipid metabolism. We observed a decrease in triacylglycerides in flies of both sexes under SG treatment. However, the effects of SG on glucose and glycogen contents were gender-specific.
Conclusion. SG influences lifespan in a sex-specific and dose-dependent manner. Excessive intake significantly alters physiological traits in Drosophila, including metabolism. Specifically, dietary SG reduced body glycogen levels in males but increased it in females, while triglyceride levels decreased in both sexes under SG treatment, indicating improved lipid utilization. These findings highlight distinct sex-based metabolic responses to SG consumption.
Keywords
Full Text:
PDFReferences
| Abolaji, A. O., Olaiya, C. O., Oluwadahunsi, O. J., & Farombi, E. O. (2017). Dietary consumption of monosodium L-glutamate induces adaptive response and reduction in the life span of Drosophila melanogaster. Cell Biochemistry and Function, 35(3), 164-170. doi:10.1002/cbf.3259 Crossref ● PubMed ● Google Scholar | ||||
| ||||
| Ahluwalia, P., & Malik, V. B. (1989). Effects of monosodium glutamate (MSG) on serum lipids, blood glucose and cholesterol in adult male mice. Toxicologic Letters, 45(2-3), 195-198. doi:10.1016/0378-4274(89)90009-x Crossref ● PubMed ● Google Scholar | ||||
| ||||
| Bahadoran, Z., Mirmiran, P., & Ghasemi, A. (2019). Monosodium glutamate (MSG)-induced animal model of type 2 diabetes. Methods in Molecular Biology, 1916, 49-65. doi:10.1007/978-1-4939-8994-2_3 Crossref ● PubMed ● Google Scholar | ||||
| ||||
| Beyreuther, K., Biesalski, H. K., Fernstrom, J. D., Grimm, P., Hammes, W. P., Heinemann, U., Kempski, O., Stehle, P., Steinhart, H., & Walker, R. (2007). Consensus meeting: monosodium glutamate - an update. European Journal of Clinical Nutrition, 61(3), 304-313. doi:10.1038/sj.ejcn.1602526 Crossref ● PubMed ● Google Scholar | ||||
| ||||
| Burrin, D. G., & Stoll, B. (2009). Metabolic fate and function of dietary glutamate in the gut. The American Journal of Clinical Nutrition, 90(3), 850S-856S. doi:10.3945/ajcn.2009.27462Y Crossref ● PubMed ● Google Scholar | ||||
| ||||
| Chourasiya, R. R., & Sharma, S. (2021). Impact of dietary components and food additives on lipid peroxidation (LPO) product in Drosophila melanogaster. Annals of Biochemistry and Biotechnology, 1(1), 1001. Retrieved from https://www.remedypublications.com/open-access/impact-of-dietary-components-and-food-additives-on-lipid-peroxidation--6911.pdf | ||||
| ||||
| Gottardo, F. M., da Silva, A. P. A., dos Santos, L. R., Colla, L. M., & Reinehr, C. O. (2022). Use of monosodium glutamate in foods: the good, the bad, and the controversial side. ABCS Health Sciences, 47, e022305. doi:10.7322/abcshs.2020155.1609 Crossref ● Google Scholar | ||||
| ||||
| Cameron, D. P., Poon, T. K., & Smith, G. C. (1976). Effects of monosodium glutamate administration in the neonatal period on the diabetic syndrome in KK mice. Diabetologia, 12(6), 621-626. doi:10.1007/bf01220641 Crossref ● PubMed ● Google Scholar | ||||
| ||||
| Croset, V., Schleyer, M., Arguello, J. R., Gerber, B., & Benton, R. (2016). A molecular and neuronal basis for amino acid sensing in the Drosophila larva. Scientific Reports, 6(1), 34871. doi:10.1038/srep34871 Crossref ● PubMed ● PMC ● Google Scholar | ||||
| ||||
| Insawang, T., Selmi, C., Cha'on, U., Pethlert, S., Yongvanit, P., Areejitranusorn, P., Boonsiri, P., Khampitak, T., Tangrassameeprasert, R., Pinitsoontorn, C., Prasongwattana, V., Gershwin, M. E., & Hammock, B. D. (2012). Monosodium glutamate (MSG) intake is associated with the prevalence of metabolic syndrome in a rural Thai population. Nutrition & Metabolism, 9(1), 50. doi:10.1186/1743-7075-9-50 Crossref ● PubMed ● PMC ● Google Scholar | ||||
| ||||
Kasozi, K. I., Namubiru, S., Kiconco, O., Kinyi, H. W., Ssempijja, F., Ezeonwumelu, J. O. C., Ninsiima, H. I., & Okpanachi, A. O. (2018). Low concentrations of monosodium glutamate (MSG) are safe in male Drosophila melanogaster. BMC Research Notes, 11(1), 670. doi:10.1186/s13104-018-3775-x | ||||
| ||||
| Kayode, O. T., Bello, J. A., Oguntola, J. A., Kayode, A. A. A., & Olukoya, D. K. (2023). The interplay between monosodium glutamate (MSG) consumption and metabolic disorders. Heliyon, 9(9), e19675. doi:10.1016/j.heliyon.2023.e19675 Crossref ● PubMed ● PMC ● Google Scholar | ||||
| ||||
| Liang, Q., Li, D., Li, J., Li, Y., Zou, Y., & Zhang, Y. (2024). Protective effect of Danshensu against neurotoxicity induced by monosodium glutamate in adult mice and their offspring. Heliyon, 10(3), e25546. doi:10.1016/j.heliyon.2024.e25546 Crossref ● PubMed ● PMC ● Google Scholar | ||||
| ||||
| Lushchak, O., Strilbytska, O., & Storey, K. B. (2023). Gender-specific effects of pro-longevity interventions in Drosophila. Mechanisms of Ageing and Development, 209, 111754. doi:10.1016/j.mad.2022.111754 Crossref ● PubMed ● Google Scholar | ||||
| ||||
| Masic, U., & Yeomans, M. R. (2014). Umami flavor enhances appetite but also increases satiety. The American Journal of Clinical Nutrition, 100(2), 532-538. doi:10.3945/ajcn.113.080929 Crossref ● PubMed ● Google Scholar | ||||
| ||||
| Millington, J. W., & Rideout, E. J. (2020). Sexual dimorphism: ecdysone modulates sex differences in the gut. Current Biology, 30(21), R1327-R1330. doi:10.1016/j.cub.2020.08.088 Crossref ● PubMed ● Google Scholar | ||||
| ||||
| Mlawer, S. J., Pinto, F. R., Sikes, K. J., & Connizzo, B. K. (2024). Coordination of glucose and glutamine metabolism in tendon is lost in aging. bioRxiv (Preprint), 2024.12.19.629426. doi:10.1101/2024.12.19.629426 Crossref ● Google Scholar | ||||
| ||||
| Poon, T. K., & Cameron, D. P. (1978). Measurement of oxygen consumption and locomotor activity in monosodium glutamate-induced obesity. American Journal of Physiology, 234(5), E532-E534. doi:10.1152/ajpendo.1978.234.5.e532 Crossref ● PubMed ● Google Scholar | ||||
| ||||
| Sanchez, S., & Demain, A. L. (2008). Metabolic regulation and overproduction of primary metabolites. Microbial Biotechnology, 1(4), 283-319. doi:10.1111/j.1751-7915.2007.00015.x Crossref ● PubMed ● PMC ● Google Scholar | ||||
| ||||
| Soo, S. K., Rudich, Z. D., Ko, B., Moldakozhayev, A., AlOkda, A., & Van Raamsdonk, J. M. (2023). Biological resilience and aging: activation of stress response pathways contributes to lifespan extension. Ageing Research Reviews, 88, 101941. doi:10.1016/j.arr.2023.101941 Crossref ● PubMed ● Google Scholar | ||||
| ||||
| US Food and Drug Administration D. Questions and answers on monosodium glutamate (MSG). US Department of Health and Monosodium Glutamate and Type 2 Diabetes 63 Human Services Nov 19. 2012. Retrieved from https://www.fda.gov/food/ingredientspackaginglabeling/foodadditivesingredients/ucm328728.htm | ||||
| ||||
| Xiong, J. S., Branigan, D., & Li, M. (2009). Deciphering the MSG controversy. International Journal of Clinical and Experimental Medicine, 2(4), 329-336. PubMed ● PMC ● Google Scholar | ||||
| ||||
| Yang, Z., Huang, R., Fu, X., Wang, G., Qi, W., Mao, D., Shi, Z., Shen, W. L., & Wang, L. (2018). A post-ingestive amino acid sensor promotes food consumption in Drosophila. Cell Research, 28(10), 1013-1025. doi:10.1038/s41422-018-0084-9 Crossref ● PubMed ● PMC ● Google Scholar | ||||
| ||||
Zanfirescu, A., Ungurianu, A., Tsatsakis, A. M., Nițulescu, G. M., Kouretas, D., Veskoukis, A., Tsoukalas, D., Engin, A. B., Aschner, M., & Margină, D. (2019). A review of the alleged health hazards of monosodium glutamate. Comprehensive Reviews in Food Science and Food Safety, 18(4), 1111-1134. doi:10.1111/1541-4337.12448 | ||||
| ||||
| Zhang, D., Hua, Z., & Li, Z. (2024). The role of glutamate and glutamine metabolism and related transporters in nerve cells. CNS Neuroscience & Therapeutics, 30(2), e14617. doi:10.1111/cns.14617 Crossref ● PubMed ● PMC ● Google Scholar | ||||
Refbacks
- There are currently no refbacks.
Copyright (c) 2025 Olha Strilbytska, Viktoria Peteliuk, Oleh Lushchak

This work is licensed under a Creative Commons Attribution 4.0 International License.
