SODIUM GLUTAMATE ALTERS LIFESPAN, STRESS RESISTANCE AND METABOLISM IN DROSOPHILA

Olha Strilbytska, Viktoria Peteliuk, Oleh Lushchak


DOI: http://dx.doi.org/10.30970/sbi.1903.845

Abstract


Background. Sodium glutamate (SG) is a widely used flavor enhancer that is regularly consumed by many people worldwide. Despite its widespread use, the safety of SG remains a subject of debate, as existing experimental studies report conflicting results. Additional research is necessary to better understand its biological effects. In this study, we investigated the impact of SG consumption on lifespan, stress resistance, feeding behavior, and metabolism in the fruit fly Drosophila melanogaster.
Materials and Methods. To assess physiological and biochemical parameters, flies were reared for 15 days on a control diet or food supplemented with SG. Lifespan, resistance to oxidative stress and starvation, and feeding rate were assessed. In addition, we analyzed the levels of key metabolites, including glucose, glycogen, and triacylglycerides, to evaluate the metabolic consequences of SG intake.
Results and Discussion. We showed that consumption of food supplemented with a low concentration of SG (0.1%) increased the lifespan of male flies. However, high concentrations of dietary SG decreased the survival of flies of both sexes. Consumption of SG increased resistance to oxidative stress in females, whereas it decreased resis­tance to starvation. SG leads to higher overall food consumption in flies if the level of dietary SG is low. Consumption of food supplemented with SG affected carbohydrate and lipid metabolism. We observed a decrease in triacylglycerides in flies of both sexes under SG treatment. However, the effects of SG on glucose and glycogen contents were gender-specific.
Conclusion. SG influences lifespan in a sex-specific and dose-dependent manner. Excessive intake significantly alters physiological traits in Drosophila, including metabolism. Specifically, dietary SG reduced body glycogen levels in males but increased it in females, while triglyceride levels decreased in both sexes under SG treatment, indicating improved lipid utilization. These findings highlight distinct sex-based metabolic responses to SG consumption.


Keywords


monosodium glutamate, metabolism, lifespan, nutrition

Full Text:

PDF

References


Abolaji, A. O., Olaiya, C. O., Oluwadahunsi, O. J., & Farombi, E. O. (2017). Dietary consumption of monosodium L-glutamate induces adaptive response and reduction in the life span of Drosophila melanogaster. Cell Biochemistry and Function, 35(3), 164-170. doi:10.1002/cbf.3259
CrossrefPubMedGoogle Scholar

Ahluwalia, P., & Malik, V. B. (1989). Effects of monosodium glutamate (MSG) on serum lipids, blood glucose and cholesterol in adult male mice. Toxicologic Letters, 45(2-3), 195-198. doi:10.1016/0378-4274(89)90009-x
CrossrefPubMedGoogle Scholar

Bahadoran, Z., Mirmiran, P., & Ghasemi, A. (2019). Monosodium glutamate (MSG)-induced animal model of type 2 diabetes. Methods in Molecular Biology, 1916, 49-65. doi:10.1007/978-1-4939-8994-2_3
CrossrefPubMedGoogle Scholar

Beyreuther, K., Biesalski, H. K., Fernstrom, J. D., Grimm, P., Hammes, W. P., Heinemann, U., Kempski, O., Stehle, P., Steinhart, H., & Walker, R. (2007). Consensus meeting: monosodium glutamate - an update. European Journal of Clinical Nutrition, 61(3), 304-313. doi:10.1038/sj.ejcn.1602526
CrossrefPubMedGoogle Scholar

Burrin, D. G., & Stoll, B. (2009). Metabolic fate and function of dietary glutamate in the gut. The American Journal of Clinical Nutrition, 90(3), 850S-856S. doi:10.3945/ajcn.2009.27462Y
CrossrefPubMedGoogle Scholar

Chourasiya, R. R., & Sharma, S. (2021). Impact of dietary components and food additives on lipid peroxidation (LPO) product in Drosophila melanogaster. Annals of Biochemistry and Biotechnology, 1(1), 1001. Retrieved from https://www.remedypublications.com/open-access/impact-of-dietary-components-and-food-additives-on-lipid-peroxidation--6911.pdf

Gottardo, F. M., da Silva, A. P. A., dos Santos, L. R., Colla, L. M., & Reinehr, C. O. (2022). Use of monosodium glutamate in foods: the good, the bad, and the controversial side. ABCS Health Sciences, 47, e022305. doi:10.7322/abcshs.2020155.1609
CrossrefGoogle Scholar

Cameron, D. P., Poon, T. K., & Smith, G. C. (1976). Effects of monosodium glutamate administration in the neonatal period on the diabetic syndrome in KK mice. Diabetologia, 12(6), 621-626. doi:10.1007/bf01220641
CrossrefPubMedGoogle Scholar

Croset, V., Schleyer, M., Arguello, J. R., Gerber, B., & Benton, R. (2016). A molecular and neuronal basis for amino acid sensing in the Drosophila larva. Scientific Reports, 6(1), 34871. doi:10.1038/srep34871
CrossrefPubMedPMCGoogle Scholar

Insawang, T., Selmi, C., Cha'on, U., Pethlert, S., Yongvanit, P., Areejitranusorn, P., Boonsiri, P., Khampitak, T., Tangrassameeprasert, R., Pinitsoontorn, C., Prasongwattana, V., Gershwin, M. E., & Hammock, B. D. (2012). Monosodium glutamate (MSG) intake is associated with the prevalence of metabolic syndrome in a rural Thai population. Nutrition & Metabolism, 9(1), 50. doi:10.1186/1743-7075-9-50
CrossrefPubMedPMCGoogle Scholar

Kasozi, K. I., Namubiru, S., Kiconco, O., Kinyi, H. W., Ssempijja, F., Ezeonwumelu, J. O. C., Ninsiima, H. I., & Okpanachi, A. O. (2018). Low concentrations of monosodium glutamate (MSG) are safe in male Drosophila melanogaster. BMC Research Notes, 11(1), 670. doi:10.1186/s13104-018-3775-x
CrossrefPubMedPMCGoogle Scholar

Kayode, O. T., Bello, J. A., Oguntola, J. A., Kayode, A. A. A., & Olukoya, D. K. (2023). The interplay between monosodium glutamate (MSG) consumption and metabolic disorders. Heliyon, 9(9), e19675. doi:10.1016/j.heliyon.2023.e19675
CrossrefPubMedPMCGoogle Scholar

Liang, Q., Li, D., Li, J., Li, Y., Zou, Y., & Zhang, Y. (2024). Protective effect of Danshensu against neurotoxicity induced by monosodium glutamate in adult mice and their offspring. Heliyon, 10(3), e25546. doi:10.1016/j.heliyon.2024.e25546
CrossrefPubMedPMCGoogle Scholar

Lushchak, O., Strilbytska, O., & Storey, K. B. (2023). Gender-specific effects of pro-longevity interventions in Drosophila. Mechanisms of Ageing and Development, 209, 111754. doi:10.1016/j.mad.2022.111754
CrossrefPubMedGoogle Scholar

Masic, U., & Yeomans, M. R. (2014). Umami flavor enhances appetite but also increases satiety. The American Journal of Clinical Nutrition, 100(2), 532-538. doi:10.3945/ajcn.113.080929
CrossrefPubMedGoogle Scholar

Millington, J. W., & Rideout, E. J. (2020). Sexual dimorphism: ecdysone modulates sex differences in the gut. Current Biology, 30(21), R1327-R1330. doi:10.1016/j.cub.2020.08.088
CrossrefPubMedGoogle Scholar

Mlawer, S. J., Pinto, F. R., Sikes, K. J., & Connizzo, B. K. (2024). Coordination of glucose and glutamine metabolism in tendon is lost in aging. bioRxiv (Preprint), 2024.12.19.629426. doi:10.1101/2024.12.19.629426
CrossrefGoogle Scholar

Poon, T. K., & Cameron, D. P. (1978). Measurement of oxygen consumption and locomotor activity in monosodium glutamate-induced obesity. American Journal of Physiology, 234(5), E532-E534. doi:10.1152/ajpendo.1978.234.5.e532
CrossrefPubMedGoogle Scholar

Sanchez, S., & Demain, A. L. (2008). Metabolic regulation and overproduction of primary metabolites. Microbial Biotechnology, 1(4), 283-319. doi:10.1111/j.1751-7915.2007.00015.x
CrossrefPubMedPMCGoogle Scholar

Soo, S. K., Rudich, Z. D., Ko, B., Moldakozhayev, A., AlOkda, A., & Van Raamsdonk, J. M. (2023). Biological resilience and aging: activation of stress response pathways contributes to lifespan extension. Ageing Research Reviews, 88, 101941. doi:10.1016/j.arr.2023.101941
CrossrefPubMedGoogle Scholar

US Food and Drug Administration D. Questions and answers on monosodium glutamate (MSG). US Department of Health and Monosodium Glutamate and Type 2 Diabetes 63 Human Services Nov 19. 2012. Retrieved from https://www.fda.gov/food/ingredientspackaginglabeling/foodadditivesingredients/ucm328728.htm

Xiong, J. S., Branigan, D., & Li, M. (2009). Deciphering the MSG controversy. International Journal of Clinical and Experimental Medicine, 2(4), 329-336.
PubMedPMCGoogle Scholar

Yang, Z., Huang, R., Fu, X., Wang, G., Qi, W., Mao, D., Shi, Z., Shen, W. L., & Wang, L. (2018). A post-ingestive amino acid sensor promotes food consumption in Drosophila. Cell Research, 28(10), 1013-1025. doi:10.1038/s41422-018-0084-9
CrossrefPubMedPMCGoogle Scholar

Zanfirescu, A., Ungurianu, A., Tsatsakis, A. M., Nițulescu, G. M., Kouretas, D., Veskoukis, A., Tsoukalas, D., Engin, A. B., Aschner, M., & Margină, D. (2019). A review of the alleged health hazards of monosodium glutamate. Comprehensive Reviews in Food Science and Food Safety, 18(4), 1111-1134. doi:10.1111/1541-4337.12448
CrossrefPubMedPMCGoogle Scholar

Zhang, D., Hua, Z., & Li, Z. (2024). The role of glutamate and glutamine metabolism and related transporters in nerve cells. CNS Neuroscience & Therapeutics, 30(2), e14617. doi:10.1111/cns.14617
CrossrefPubMedPMCGoogle Scholar


Refbacks

  • There are currently no refbacks.


Copyright (c) 2025 Olha Strilbytska, Viktoria Peteliuk, Oleh Lushchak

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.