IMPACT OF Fe3O4 NANOPARTICLES IN VITRO ON THE CONTRACTILE ACTIVITY OF SMOOTH MUSCLES OF RAT ANTRUM AND AORTA

Yuliia Podhaietska, Sergiy Kolotilov, Mykyta Ivanytsya, Diana Doronina, Anna Velbovets, Oleksandr Chunikhin, Oksana Malanchuk, Ivan Voiteshenko, Olga Tsymbalyuk


DOI: http://dx.doi.org/10.30970/sbi.1903.844

Abstract


Background. Magnetic iron oxide nanoparticles are among the most promising materials for creating new theranostics tools for malignant neoplasms. Currently, a number of medical preparations based on iron oxide nanoparticles have been introduced into diagnostic and medical practice, MRI diagnostics, and photosensitizing therapy, as well as a source of iron for patients with a deficiency of this element. However, these nanoparticles are not completely neutral with respect to the functions of organs and tissues of the body, in particular the cardiovascular, respiratory, genitourinary, and central nervous systems. The effect of Fe3O4 nanoparticles on the contraction of smooth muscles of the gastrointestinal tract and aorta has not been studied. The purpose of our study was to clarify the features and mechanisms of the in vitro effect of these nanoparticles on the functional activity of the annular smooth muscles of the stomach and preparations of rat aortic rings.
Materials and Methods. A suspension of Fe3O4 nanoparticles in water was used. The nanoparticles were characterized by transmission electron microscopy (TEM) and selected area electron diffraction (SAED). The average hydrodynamic diameter of Fe3O4 nanoparticles in suspension upon stabilization with oleic acid (1%), bovine serum albumin (7.5%), and DMSO (1%) was determined by dynamic light scattering.
The tenzometric experiments were conducted in the isometric recording mode on isolated preparations of circular smooth muscles of the antrum and rings of the thoracic aorta of rats. In the case of antrum muscles, contractions were induced by application of a high-potassium solution (80 mM), acetylcholine (10-5 M), and nicotine (10-4 M), and in the case of aortic preparations – a high-potassium solution (80 mM) and epinephrine (10-6 M). Contractions were analyzed by mechanokinetic analysis methods.
Results. It was determined that under the conditions of using DMSO as a stabilizer, the suspension contained a minimal quantity of aggregates of Fe3O4 nanopartic­les, showing a peak with an average value of 67.2 nm and a width of 75.3 nm (in terms of number), and was quite stable.
It was found that the use of Fe3O4 (10-4 mg/mL) in vitro led to the activation of contractions of smooth muscle preparations of the stomach and aorta caused by the application of a high-potassium solution. Also, under the action of Fe3O4, reversible activation of spontaneous contractions of the smooth muscle of the stomach was observed. Mechanokinetic analysis has established that Fe3O4 caused an increase in force, time, and impulse parameters.
It was found that under the action of Fe3O4 nanoparticles, epinephrine-activated contractions of aortic rings and nicotine-activated contractions of stomach preparations were significantly reduced. However, Fe3O4 caused a significant increase in acetylcholine-activated contractions of gastric preparations.
Conclusions.  Fe3O4 nanoparticles modulate spontaneous and induced contractions of the antrum and aortic smooth muscle preparations. The main mechanisms of such modulation likely involve the activation of voltage-gated Ca2+ ion influx into smooth muscle cells and the sorption of epinephrine and nicotine by these nanoparticles.


Keywords


aorta, antral stomach, Fe3O4 nanoparticles, voltage-gated Ca2+-channels, acetylcholine, epinephrine, nicotine, mechanokinetic parameters

Full Text:

PDF

References


Al-Thani, A. N., Jan, A. G., Abbas, M., Geetha, M., & Sadasivuni, K. K. (2024). Nanoparticles in cancer theragnostic and drug delivery: a comprehensive review. Life Sciences, 352, 122899. doi:10.1016/j.lfs.2024.122899
CrossrefPubMedGoogle Scholar

Angelopoulos, I., Southern, P., Pankhurst, Q. A., & Day, R. M. (2016). Superparamagnetic iron oxide nanoparticles regulate smooth muscle cell phenotype. Journal of Biomedical Materials Research Part A, 104(10), 2412-2419. doi:10.1002/jbm.a.35780
CrossrefPubMedPMCGoogle Scholar

Baabu, P. R. S., Kumar, H. K., Gumpu, M. B., Babu K, J., Kulandaisamy, A. J., & Rayappan, J. B. B. (2022). Iron oxide nanoparticles: a review on the province of its compounds, properties and biological applications. Materials, 16(1), 59. doi:10.3390/ma16010059
CrossrefPubMedPMCGoogle Scholar

Babsky, A. M., Hekmatyar, S. K., Zhang, H., Solomon, J. L., & Bansal, N. (2005). Application of 23Na MRI to monitor chemotherapeutic response in RIF-1 tumors. Neoplasia, 7(7), 658-666. doi:10.1593/neo.05130
CrossrefPubMedPMCGoogle Scholar

Benjamin, A. S., & Nayak, S. (2025). Iron oxide nanoparticles coated with bioactive materials: a viable theragnostic strategy to improve osteosarcoma treatment. Discover Nano, 20(1), 18. doi:10.1186/s11671-024-04163-w
CrossrefPubMedPMCGoogle Scholar

Burdyga, T. V., & Kosterin, S. A. (1991). Kinetic analysis of smooth muscle relaxation. General Physiology and Biophysics, 10(6), 589-598.
PubMedGoogle Scholar

Capriotti, K., & Capriotti, J. A. (2012). Dimethyl sulfoxide: history, chemistry, and clinical utility in dermatology. The Journal of Clinical and Aesthetic Dermatology, 5(9), 24-26.
PubMedPMCGoogle Scholar

Castaneda, R. T., Khurana, A., Khan, R., & Daldrup-Link, H. E. (2011). Labeling stem cells with ferumoxytol, an FDA-approved iron oxide nanoparticle. Journal of Visualized Experiments, 57, e3482. doi:10.3791/3482
CrossrefPubMedPMCGoogle Scholar

Driscoll, J., Yan, I. K., Angom, R. S., Moirangthem, A., & Patel, T. (2021). Evaluation of in vivo toxicity of biological nanoparticles. Current Protocols, 1(9), e249. doi:10.1002/cpz1.249
CrossrefPubMedPMCGoogle Scholar

Feng, Q., Liu, Y., Huang, J., Chen, K., Huang, J., & Xiao, K. (2018). Uptake, distribution, clearance, and toxicity of iron oxide nanoparticles with different sizes and coatings. Scientific Reports, 8(1), 2082. doi:10.1038/s41598-018-19628-z
CrossrefPubMedPMCGoogle Scholar

Finiuk, N. S., Popovych, M. V., Shalai, Ya. R., Mandzynets, S. M., Grenyukh, V. P., Ostapiuk, Yu. V., Obushak, M. D., Mitina, N. E., Zaichenko, O. S., Stoika, R. S., & Babsky, A. M. (2021). Antineoplastic activity in vitro of 2-amino-5-benzylthiazole derivative in complex with nanoscale polymeric carrier. Cytology and Genetics, 55(1), 19-27, doi:10.3103/s0095452721010084
CrossrefGoogle Scholar

Gholami, A., Rasoul-amini, S., Ebrahiminezhad, A., Seradj, S. H., & Ghasemi, Y. (2015). Lipoamino acid coated superparamagnetic iron oxide nanoparticles concentration and time dependently enhanced growth of human hepatocarcinoma cell line (Hep-G2). Journal of Nanomaterials, 2015(1), 451405. doi:10.1155/2015/451405
CrossrefGoogle Scholar

Giri, J., Guha Thakurta, S., Bellare, J., Kumar Nigam, A., & Bahadur, D. (2005). Preparation and characterization of phospholipid stabilized uniform sized magnetite nanoparticles. Journal of Magnetism and Magnetic Materials, 293(1), 62-68. doi:10.1016/j.jmmm.2005.01.044
CrossrefGoogle Scholar

Goud, C., Pitt, B., Webb, R. C., & Richey, J. M. (1998). Synergistic actions of insulin and troglitazone on contractility in endothelium-denuded rat aortic rings. American Journal of Physiology-Endocrinology and Metabolism, 275(5), E882-E887. doi:10.1152/ajpendo.1998.275.5.e882
CrossrefPubMedGoogle Scholar

Hilger, I., Frühauf, S., Linß, W., Hiergeist, R., Andrä, W., Hergt, R., & Kaiser, W. A. (2003). Cytotoxicity of selected magnetic fluids on human adenocarcinoma cells. Journal of Magnetism and Magnetic Materials, 261(1-2), 7-12. doi:10.1016/s0304-8853(01)00258-x
CrossrefGoogle Scholar

Jia, Z., Song, L., Zang, F., Song, J., Zhang, W., Yan, C., Xie, J., Ma, Z., Ma, M., Teng, G., Gu, N., & Zhang, Y. (2016). Active-target T1-weighted MR imaging of tiny hepatic tumor via RGD modified ultra-small Fe3O4 nanoprobes. Theranostics, 6(11), 1780-1791. doi:10.7150/thno.14280
CrossrefPubMedPMCGoogle Scholar

Joudeh, N., & Linke, D. (2022). Nanoparticle classification, physicochemical properties, characterization, and applications: a comprehensive review for biologists. Journal of Nanobiotechnology, 20(1), 262. doi:10.1186/s12951-022-01477-8
CrossrefPubMedPMCGoogle Scholar

Ju-Nam, Y., Abdussalam-Mohammed, W., & Ojeda, J. J. (2016). Highly stable noble metal nanoparticles dispersible in biocompatible solvents: synthesis of cationic phosphonium gold nanoparticles in water and DMSO. Faraday Discussions, 186, 77-93. doi:10.1039/c5fd00131e
CrossrefPubMedGoogle Scholar

Karim, M., Boikess, R. S., Schwartz, R. A., & Cohen, P. J. (2023). Dimethyl sulfoxide (DMSO): a solvent that may solve selected cutaneous clinical challenges. Archives of Dermatological Research, 315(6), 1465-1472. doi:10.1007/s00403-022-02494-1
CrossrefPubMedGoogle Scholar

Kosterin, S., Tsymbalyuk, O., & Holden, O. (2021). Multiparameter analysis of mechanokinetics of the contractile response of smooth muscles. Series on Biomechanics, 35(1), 14-30.
Google Scholar

Lin, T. H., Lu, C. Y., & Tseng, W. L. (2013). Selective enrichment of catecholamines using iron oxide nanoparticles followed by CE with UV detection. Electrophoresis, 34(2), 297-303. doi:10.1002/elps.201200285
CrossrefPubMedGoogle Scholar

Líšková, S., Bališ, P., Mičurová, A., Kluknavský, M., Okuliarová, M., Puzserová, A., Škrátek, M., Sekaj, I., Maňka, J., Valovič, P., & Bernátová, I. (2020). Effect of iron oxide nanoparticles on vascular function and nitric oxide production in acute stress-exposed rats. Physiological Research, 69(6), 1067-1083. doi:10.33549/physiolres.934567
CrossrefPubMedPMCGoogle Scholar

Liu, J., Ji, C., Liu, X., Li, X., Wu, H., & Zeng, D. (2021). Fe3O4 nanoparticles as matrix solid-phase dispersion extraction adsorbents for the analysis of thirty pesticides in vegetables by ultrahigh-performance liquid chromatography-tandem mass spectrometry. Journal of Chromatography B, 1165, 122532. doi:10.1016/j.jchromb.2021.122532
CrossrefPubMedGoogle Scholar

Mashouf, P., Tabibzadeh, N., Kuraoka, S., Oishi, H., & Morizane, R. (2024). Cryopreservation of human kidney organoids. Cellular and Molecular Life Sciences, 81(1), 306. doi:10.1007/s00018-024-05352-7
CrossrefPubMedPMCGoogle Scholar

Mehta, K. J. (2022). Iron oxide nanoparticles in mesenchymal stem cell detection and therapy. Stem Cell Reviews and Reports, 18(7), 2234-2261. doi:10.1007/s12015-022-10343-x
CrossrefPubMedPMCGoogle Scholar

Nowak-Jary, J., & Machnicka, B. (2024). Comprehensive analysis of the potential toxicity of magnetic iron oxide nanoparticles for medical applications: cellular mechanisms and systemic effects. International Journal of Molecular Sciences, 25(22), 12013. doi:10.3390/ijms252212013
CrossrefPubMedPMCGoogle Scholar

Obireddy, S. R., & Lai, W.-F. (2022). ROS-generating amine-functionalized magnetic nanoparticles coupled with carboxymethyl chitosan for pH-responsive release of doxorubicin. International Journal of Nanomedicine, 17, 589-601. doi:10.2147/ijn.s338897
CrossrefPubMedPMCGoogle Scholar

Olsen, T. R., Mattix, B., Casco, M., Herbst, A., Williams, C., Tarasidis, A., Simionescu, D., Visconti, R. P., & Alexis, F. (2015). Manipulation of cellular spheroid composition and the effects on vascular tissue fusion. Acta Biomaterialia, 13, 188-198. doi:10.1016/j.actbio.2014.11.024
CrossrefPubMedPMCGoogle Scholar

Ramnarine, S. I., Hirayama, Y., Barnes, P. J., & Rogers, D. F. (1994). 'Sensory-efferent' neural control of mucus secretion: characterization using tachykinin receptor antagonists in ferret trachea in vitro. British Journal of Pharmacology, 113(4), 1183-1190. doi:10.1111/j.1476-5381.1994.tb17122.x
CrossrefPubMedPMCGoogle Scholar

Rivière, C., Boudghène, F. P., Gazeau, F., Roger, J., Pons, J. N., Laissy, J. P., Allaire, E., Michel, J. B., Letourneur, D., & Deux, J. F. (2005). Iron oxide nanoparticle-labeled rat smooth muscle cells: cardiac MR imaging for cell graft monitoring and quantitation. Radiology, 235(3), 959-967. doi:10.1148/radiol.2353032057
CrossrefPubMedGoogle Scholar

Salimi, M., Mosca, S., Gardner, B., Palombo, F., Matousek, P., & Stone, N. (2022). Nanoparticle-mediated photothermal therapy limitation in clinical applications regarding pain management. Nanomaterials, 12(6), 922. doi:10.3390/nano12060922
CrossrefPubMedPMCGoogle Scholar

Shi, N., Bu, X., Zhang, M., Wang, B., Xu, X., Shi, X., Hussain, D., Xu, X., & Chen, D. (2022). Current sample preparation methodologies for determination of catecholamines and their metabolites. Molecules, 27(9), 2702. doi:10.3390/molecules27092702
CrossrefPubMedPMCGoogle Scholar

Shoudho, K. N., Uddin, S., Rumon, M. M. H., & Shakil, M. S. (2024). Influence of physicochemical properties of iron oxide nanoparticles on their antibacterial activity. ACS Omega, 9(31), 33303-33334. doi:10.1021/acsomega.4c02822
CrossrefPubMedPMCGoogle Scholar

Shukla, S., Jadaun, A., Arora, V., Sinha, R. K., Biyani, N., & Jain, V. K. (2015). In vitro toxicity assessment of chitosan oligosaccharide coated iron oxide nanoparticles. Toxicology Reports, 2, 27-39. doi:10.1016/j.toxrep.2014.11.002
CrossrefPubMedPMCGoogle Scholar

Singh, R., Yadav, D., Ingole, P. G., & Ahn, Y.-H. (2024). Magnetic engineering nanoparticles: versatile tools revolutionizing biomedical applications. Biomaterials Advances, 163, 213948. doi:10.1016/j.bioadv.2024.213948
CrossrefPubMedGoogle Scholar

Subotin, V. V., Ivanytsya, M. O., Terebilenko, A. V., Yaremov, P. S., Pariiska, O. O., Akimov, Y. M., Kotenko, I. E., Sabov, T. M., Kurmach, M. M., Ryabukhin, S. V., Volochnyuk, D. M., & Kolotilov, S. V. (2023). Air-stable efficient nickel catalyst for hydrogenation of organic compounds. Catalysts, 13(4), 706. doi:10.3390/catal13040706
CrossrefGoogle Scholar

Takahashi, T. (2021). Multiple roles for cholinergic signaling from the perspective of stem cell function. International Journal of Molecular Sciences, 22(2), 666. doi:10.3390/ijms22020666
CrossrefPubMedPMCGoogle Scholar

Vakili-Ghartavol, R., Momtazi-Borojeni, A. A., Vakili-Ghartavol, Z., Aiyelabegan, H. T., Jaafari, M. R., Rezayat, S. M., & Arbabi Bidgoli, S. (2020). Toxicity assessment of superparamagnetic iron oxide nanoparticles in different tissues. Artificial Cells, Nanomedicine, and Biotechnology, 48(1), 443-451. doi:10.1080/21691401.2019.1709855
CrossrefPubMedGoogle Scholar

Vallabani, N. V. S., & Singh, S. (2018). Recent advances and future prospects of iron oxide nanoparticles in biomedicine and diagnostics. 3 Biotech, 8(6), 279. doi:10.1007/s13205-018-1286-z
CrossrefPubMedPMCGoogle Scholar

Vukova, T. I., Dimitrov, S. D., Gagov, H. S., & Dimitrova, D. Z. (2016). In focus: Fe3O4 nanoparticles and human mesenteric artery interaction in vitro. Nanomedicine, 11(8), 921-932. doi:10.2217/nnm.16.25
CrossrefPubMedGoogle Scholar

Wang, H., Zhao, B., Huang, L., Zhu, X., Li, N., Huang, C., Han, Z., & Ouyang, K. (2025). Conditional deletion of IP3R1 by Islet1-Cre in mice reveals a critical role of IP3R1 in interstitial cells of Cajal in regulating GI motility. Journal of Gastroenterology, 60(2), 152-165. doi:10.1007/s00535-024-02164-1
CrossrefPubMedGoogle Scholar

Wang, Y., Li, B., Xu, H., Du, S., Liu, T., Ren, J., Zhang, J., Zhang, H., Liu, Y., & Lu, L. (2020). Growth and elongation of axons through mechanical tension mediated by fluorescent-magnetic bifunctional Fe3O4·Rhodamine 6G@PDA superparticles. Journal of Nanobiotechnology, 18(1), 64. doi:10.1186/s12951-020-00621-6
CrossrefPubMedPMCGoogle Scholar

Wu, L., Wen, W., Wang, X., Huang, D., Cao, J., Qi, X., & Shen, S. (2022). Ultrasmall iron oxide nanoparticles cause significant toxicity by specifically inducing acute oxidative stress to multiple organs. Particle and Fibre Toxicology, 19(1), 24. doi:10.1186/s12989-022-00465-y
CrossrefPubMedPMCGoogle Scholar

Yan, J., Li, S., Cartieri, F., Wang, Z., Hitchens, T. K., Leonardo, J., Averick, S. E., & Matyjaszewski, K. (2018). Iron oxide nanoparticles with grafted polymeric analogue of dimethyl sulfoxide as potential magnetic resonance imaging contrast agents. ACS Applied Materials & Interfaces, 10(26), 21901-21908. doi:10.1021/acsami.8b06416
CrossrefPubMedGoogle Scholar

Yang, L., Kuang, H., Zhang, W., Aguilar, Z. P., Xiong, Y., Lai, W., Xu, H., & Wei, H. (2015). Size dependent biodistribution and toxicokinetics of iron oxide magnetic nanoparticles in mice. Nanoscale, 7(2), 625-636. doi:10.1039/c4nr05061d
CrossrefPubMedGoogle Scholar

Yang, H. Y., Steenhuis, P., Glucksman, A. M., Gurenko, Z., La, T. D., & Isseroff, R. R. (2021). Alpha and beta adrenergic receptors modulate keratinocyte migration. PloS One, 16(7), e0253139. doi:10.1371/journal.pone.0253139
CrossrefPubMedPMCGoogle Scholar

Yoneda, S., Fukui, H., & Takaki, M. (2004). Pacemaker activity from submucosal interstitial cells of Cajal drives high-frequency and low-amplitude circular muscle contractions in the mouse proximal colon. Neurogastroenterology and Motility, 16(5), 621-627. doi:10.1111/j.1365-2982.2004.00546.x
CrossrefPubMedGoogle Scholar

Yotsomnuk, P., Skolpap, W., & Thitapakorn, V. (2025). Release dynamics and toxicological analysis of astilbin from lauric acid/BSA-coated superparamagnetic iron oxide nanoparticles. Colloids and Surfaces. B, Biointerfaces, 252, 114620. doi:10.1016/j.colsurfb.2025.114620
CrossrefPubMedGoogle Scholar

Younis, N. K., Roumieh, R., Bassil, E. P., Ghoubaira, J. A., Kobeissy, F., & Eid, A. H. (2022). Nanoparticles: attractive tools to treat colorectal cancer. Seminars in Cancer Biology, 86(2), 1-13. doi:10.1016/j.semcancer.2022.08.006
CrossrefPubMedGoogle Scholar

Yuan, M., Bancroft, E. A., Chen, J., Srinivasan, R., & Wang, Y. (2022). Magnetic fields and magnetically stimulated gold-coated superparamagnetic iron oxide nanoparticles differentially modulate L-type voltage-gated calcium channel activity in midbrain neurons. ACS Applied Nano Materials, 5(1), 205-215. doi:10.1021/acsanm.1c02665
CrossrefPubMedPMCGoogle Scholar

Zhang, W., Gao, J., Lu, L., Bold, T., Li, X., Wang, S., Chang, Z., Chen, J., Kong, X., Zheng, Y., Zhang, M., & Tang, J. (2021). Intracellular GSH/GST antioxidants system change as an earlier biomarker for toxicity evaluation of iron oxide nanoparticles. NanoImpact, 23, 100338. doi:10.1016/j.impact.2021.100338
CrossrefPubMedGoogle Scholar

Zhao, S., Yu, X., Qian, Y., Chen, W., & Shen, J. (2020). Multifunctional magnetic iron oxide nanoparticles: an advanced platform for cancer theranostics. Theranostics, 10(14), 6278-6309. doi:10.7150/thno.42564
CrossrefPubMedPMCGoogle Scholar


Refbacks

  • There are currently no refbacks.


Copyright (c) 2025 Yuliia Podhaietska, Sergiy Kolotilov, Mykyta Ivanytsya, Diana Doronina, Anna Velbovets, Oleksandr Chunikhin, Oksana Malanchuk, Ivan Voyteshenko, Olga Tsymbalyuk

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.