DETECTION OF ALKALINE PHOSPHATASE ACTIVITY IN BLOOD SERUM USING A RECOMBINATION-BASED SEMICONDUCTOR SENSOR

Sergii Litvinenko, Oleksii Kozinetz, Bogdan Sus, Olga Tsymbalyuk


DOI: http://dx.doi.org/10.30970/sbi.1903.837

Abstract


Background. Most pathologies of the human body (malignant liver tumors, chole­stasis, preeclampsia, gestational diabetes, prostate cancer, etc.) are accompanied by a violation of the integrity of cells in target tissues and the release of intracellular macro­molecules into the extracellular environment. Thus, an important diagnostic and prognostic indicator is the level of activity of certain enzymes, which are normally intracellular, in blood serum. One of the most promising areas of modern medical electronics and biophysics is the development and optimization of enzyme screening methods in biological fluids. In this study, we aimed to investigate the biophysical characteristics of alkaline phosphatase (ALP) using a recombination sensor for determining activity in biological fluids.
Materials and Methods. Experiments were performed on preparations of stan­dard human blood serum. The reference determination of alkaline phosphatase acti­vity was carried out photo­metrically. The passage of the alkaline phosphatase reaction was experimentally recorded by measuring the photocurrent of a silicon structure with a buried barrier under several additional factors, such as modified electric fields or modu­lated illumination.
Results. The biophysical features were studied. The detection of ALP becomes possible due to cleaving 4-nitrophenyl phosphate to phenol. These chemical reactions are accompanied by a redistribution of the reagent charges, particularly an increase in negative charge. The effect is explained by the local electrostatic influence on the parameters of the recombination centers near the silicon surface, which leads to a change in the surface recombination rate.
Conclusions. Our approach can be regarded as promising for the development of a highly sensitive method for the detection of ALP. It has been experimentally shown that effective detection is possible due to the rearrangement of electronic states at the SiOx/Si interface of the deep barrier silicon following the adsorption.


Keywords


alkaline phosphatase, enzymatic activity, initial band bending, photoelectrical transducer, surface recombination velocity, biomedical diagnostic

Full Text:

PDF

References


Atia, M. M., Mahmoud, H. A. A., Wilson, M., & Abd-Allah, E. A. (2024). A comprehensive survey of warfarin-induced hepatic toxicity using histopathological, biomarker, and molecular evaluation. Heliyon, 10(4), e26484. doi:10.1016/j.heliyon.2024.e26484
CrossrefPubMedPMCGoogle Scholar

Azpiazu, D., Gonzalo, S., & Villa-Bellosta, R. (2019). Tissue non-specific alkaline phosphatase and vascular calcification: a potential therapeutic target. Current Cardiology Reviews, 15(2), 91-95. doi:10.2174/1573403x14666181031141226
CrossrefPubMedPMCGoogle Scholar

Balbaied, T., & Moore, E. (2019). Overview of optical and electrochemical alkaline phosphatase (ALP) biosensors: recent approaches in cells culture techniques. Biosensors, 9(3), 102. doi:10.3390/bios9030102
CrossrefPubMedPMCGoogle Scholar

Brichacek, A. L., & Brown, C. M. (2018). Alkaline phosphatase: a potential biomarker for stroke and implications for treatment. Metabolic Brain Disease, 34(1), 3-19. doi:10.1007/s11011-018-0322-3
CrossrefPubMedPMCGoogle Scholar

Davis, K., Imel, E. A., & Kelley, J. (2024). Hypophosphatemic rickets and short stature. Journal of Bone and Mineral Research, 39(7), 821-825. doi:10.1093/jbmr/zjae103
CrossrefPubMedGoogle Scholar

Goud, K. Y., Reddy, K. K., Khorshed, A., Kumar, V. S., Mishra, R. K., Oraby, M., Ibrahim, A. H., Kim, H., & Gobi, K. V. (2021). Electrochemical diagnostics of infectious viral diseases: trends and challenges. Biosensors and Bioelectronics, 180, 113112. doi:10.1016/j.bios.2021.113112
CrossrefPubMedPMCGoogle Scholar

Jiang, T., Zeng, Q., & He, J. (2023). Do alkaline phosphatases have great potential in the diagnosis, prognosis, and treatment of tumors? Translational Cancer Research, 12(10), 2932-2945. doi:10.21037/tcr-23-1190
CrossrefPubMedPMCGoogle Scholar

International Agency for Research on Cancer (IARC). (1999). Re-evaluation of some organic chemicals, hydrazine and hydrogen peroxide. In: IARC monographs on the evaluation on the carcinogenic risks to humans (Vol. 71, pp. 749-768). Lyon: IARC. Retrieved from https://www.ncbi.nlm.nih.gov/books/NBK499014
Google Scholar

Kalligosfyri, P. M., Miglione, A., Esposito, A., Alhardan, R., Iula, G., Atay, I., Darwish, I. A., Kurbanoglu, S., & Cinti, S. (2025). Flexible screen-printed electrochemical sensor for alkaline phosphatase detection in biofluids for biomedical applications. ChemistryOpen, 14(6), e202500113. doi:10.1002/open.202500113
CrossrefPubMedPMCGoogle Scholar

Kaplan, L. A., Pesce, A. J., & Kazmierczak, S. C. (1996). Clinical chemistry: theory, analysis, correlation. Sant Louis: Mosby.
Google Scholar

Kozinetz, A. V., Tsymbalyuk, O. V., & Litvinenko, S. V. (2022). The first application of sensory structures based on photoelectric transducer for the study of enzymatic reactions. Studia Biologica, 16(4),3-18. doi:10.30970/sbi.1604.698
CrossrefGoogle Scholar

Kozinetz, A., Sus, B., Tsymbalyuk, O., & Litvinenko, S. (2024). Photovoltaic recombination sensor as system for real-time determination of lactate dehydrogenase activity. Sensing and Bio-Sensing Research, 43, 100620. doi:10.1016/j.sbsr.2024.100620
CrossrefGoogle Scholar

Li, Q., Wang, H., Wang, H., Deng, J., Cheng, Z., Lin, W., Zhu, R., Chen, S., Guo, J., Tang, L. V., & Hu, Y. (2023). Association between serum alkaline phosphatase levels in late pregnancy and the incidence of venous thromboembolism postpartum: a retrospective cohort study. EClinicalMedicine, 62, 102088. doi:10.1016/j.eclinm.2023.102088
CrossrefPubMedPMCGoogle Scholar

Millán, J. L., & Whyte, M. P. (2016). Alkaline phosphatase and hypophosphatasia. Calcified Tissue International, 98(4), 398-416. doi:10.1007/s00223-015-0079-1
CrossrefPubMedPMCGoogle Scholar

Nešvera, J., Rucká, L., & Pátek, M. (2015). Catabolism of phenol and its derivatives in bacteria: genes, their regulation, and use in the biodegradation of toxic pollutants. Advances in Applied Microbiology, 93, 107-160. doi:10.1016/bs.aambs.2015.06.002
CrossrefPubMedGoogle Scholar

Pabis, A., & Kamerlin, S. C. L. (2016). Promiscuity and electrostatic flexibility in the alkaline phosphatase superfamily. Current Opinion in Structural Biology, 37, 14-21. doi:10.1016/j.sbi.2015.11.008
CrossrefPubMedGoogle Scholar

Riancho, J. A. (2023). Diagnostic approach to patients with low serum alkaline phosphatase. Calcified Tissue International, 112(3), 289-296. doi:10.1007/s00223-022-01039-y
CrossrefPubMedGoogle Scholar

Sato, M., Saitoh, I., Kiyokawa, Y., Iwase, Y., Kubota, N., Ibano, N., Noguchi, H., Yamasaki, Y., & Inada, E. (2021). Tissue-nonspecific alkaline phosphatase, a possible mediator of cell maturation: towards a new paradigm. Cells, 10(12), 3338. doi:10.3390/cells10123338
CrossrefPubMedPMCGoogle Scholar

Shaban, S. M., Byeok Jo, S., Hafez, E., Ho Cho, J., & Kim, D.-H. (2022). A comprehensive overview on alkaline phosphatase targeting and reporting assays. Coordination Chemistry Reviews, 465, 214567. doi:10.1016/j.ccr.2022.214567
CrossrefGoogle Scholar

Sharma, U., Pal, D., & Prasad, R. (2014). Alkaline phosphatase: an overview. Indian Journal of Clinical Biochemistry, 29(3), 269-278. doi:10.1007/s12291-013-0408-y
CrossrefPubMedPMCGoogle Scholar

Si, F., Zhang, Y., Lu, J., Hou, M., Yang, H., & Liu, Y. (2023). A highly sensitive, eco-friendly electrochemical assay for alkaline phosphatase activity based on a photoATRP signal amplification strategy. Talanta, 252, 123775. doi:10.1016/j.talanta.2022.123775
CrossrefPubMedGoogle Scholar

Simão, E. P., Frías, I. A. M., Andrade, C. A. S., & Oliveira, M. D. L. (2018). Nanostructured electrochemical immunosensor for detection of serological alkaline phosphatase. Colloids and Surfaces B: Biointerfaces, 171, 413-418. doi:10.1016/j.colsurfb.2018.07.056
CrossrefPubMedGoogle Scholar

Su, W., Qiu, T., Zhang, M., Hao, C., Zeng, P., Huang, Z., Du, W., Yun, T., Xuan, Y., Zhang, L., Guo, Y., & Jiao, W. (2022). Systems biomarker characteristics of circulating alkaline phosphatase activities for 48 types of human diseases. Current Medical Research and Opinion, 38(2), 201-209. doi:10.1080/03007995.2021.2000715
CrossrefPubMedGoogle Scholar

Tat, J., Heskett, K., Satomi, S., Pilz, R. B., Golomb, B. A., & Boss, G. R. (2021). Sodium azide poisoning: a narrative review. Clinical Toxicology, 59(8), 683-697. doi:10.1080/15563650.2021.1906888
CrossrefPubMedPMCGoogle Scholar

Turan, S., Topcu, B., Gökce, İ., Güran, T., Atay, Z., Omar, A., Akçay, T., & Bereket, A. (2011). Serum alkaline phosphatase levels in healthy children and evaluation of alkaline phosphatase z-scores in different types of rickets. Journal of Clinical Research in Pediatric Endocrinology, 3(1), 7-11. doi:10.4274/jcrpe.v3i1.02
CrossrefPubMedPMCGoogle Scholar

Villa-Suárez, J. M., García-Fontana, C., Andújar-Vera, F., González-Salvatierra, S., de Haro-Muñoz, T., Contreras-Bolívar, V., García-Fontana, B., & Muñoz-Torres, M. (2021). Hypophosphatasia: a unique disorder of bone mineralization. International Journal of Molecular Sciences, 22(9), 4303. doi:10.3390/ijms22094303
CrossrefPubMedPMCGoogle Scholar

Vimalraj, S. (2020). Alkaline phosphatase: structure, expression and its function in bone mineralization. Gene, 754, 144855. doi:10.1016/j.gene.2020.144855
CrossrefPubMedGoogle Scholar

Xiao, Y., Lu, J., Chang, W., Chen, Y., Li, X., Li, D., Xu, C., & Yang, H. (2019). Dynamic serum alkaline phosphatase is an indicator of overall survival in pancreatic cancer. BMC Cancer, 19(1), 785. doi:10.1186/s12885-019-6004-7
CrossrefPubMedPMCGoogle Scholar

Young, D. S. (1997). Effects of drugs on clinical laboratory tests. Annals of Clinical Biochemistry, 34(6), 579-581. doi:10.1177/000456329703400601
CrossrefPubMedGoogle Scholar

Zhang, H., Jia, Q., Piao, M., Chang, Y., Zhang, J., Tong, X., & Han, T. (2021). Screening of serum alkaline phosphatase and phosphate helps early detection of metabolic bone disease in extremely low birth weight infants. Frontiers in Pediatrics, 9, 642158. doi:10.3389/fped.2021.642158
CrossrefPubMedPMCGoogle Scholar


Refbacks

  • There are currently no refbacks.


Copyright (c) 2025 Sergii Litvinenko, Oleksii Kozinetz, Bogdan Sus, Olga Tsymbalyuk

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.