DETECTION OF ALKALINE PHOSPHATASE ACTIVITY IN BLOOD SERUM USING A RECOMBINATION-BASED SEMICONDUCTOR SENSOR
DOI: http://dx.doi.org/10.30970/sbi.1903.837
Abstract
Background. Most pathologies of the human body (malignant liver tumors, cholestasis, preeclampsia, gestational diabetes, prostate cancer, etc.) are accompanied by a violation of the integrity of cells in target tissues and the release of intracellular macromolecules into the extracellular environment. Thus, an important diagnostic and prognostic indicator is the level of activity of certain enzymes, which are normally intracellular, in blood serum. One of the most promising areas of modern medical electronics and biophysics is the development and optimization of enzyme screening methods in biological fluids. In this study, we aimed to investigate the biophysical characteristics of alkaline phosphatase (ALP) using a recombination sensor for determining activity in biological fluids.
Materials and Methods. Experiments were performed on preparations of standard human blood serum. The reference determination of alkaline phosphatase activity was carried out photometrically. The passage of the alkaline phosphatase reaction was experimentally recorded by measuring the photocurrent of a silicon structure with a buried barrier under several additional factors, such as modified electric fields or modulated illumination.
Results. The biophysical features were studied. The detection of ALP becomes possible due to cleaving 4-nitrophenyl phosphate to phenol. These chemical reactions are accompanied by a redistribution of the reagent charges, particularly an increase in negative charge. The effect is explained by the local electrostatic influence on the parameters of the recombination centers near the silicon surface, which leads to a change in the surface recombination rate.
Conclusions. Our approach can be regarded as promising for the development of a highly sensitive method for the detection of ALP. It has been experimentally shown that effective detection is possible due to the rearrangement of electronic states at the SiOx/Si interface of the deep barrier silicon following the adsorption.
Keywords
Full Text:
PDFReferences
| Atia, M. M., Mahmoud, H. A. A., Wilson, M., & Abd-Allah, E. A. (2024). A comprehensive survey of warfarin-induced hepatic toxicity using histopathological, biomarker, and molecular evaluation. Heliyon, 10(4), e26484. doi:10.1016/j.heliyon.2024.e26484 Crossref ● PubMed ● PMC ● Google Scholar | ||||
| ||||
| Azpiazu, D., Gonzalo, S., & Villa-Bellosta, R. (2019). Tissue non-specific alkaline phosphatase and vascular calcification: a potential therapeutic target. Current Cardiology Reviews, 15(2), 91-95. doi:10.2174/1573403x14666181031141226 Crossref ● PubMed ● PMC ● Google Scholar | ||||
| ||||
| Balbaied, T., & Moore, E. (2019). Overview of optical and electrochemical alkaline phosphatase (ALP) biosensors: recent approaches in cells culture techniques. Biosensors, 9(3), 102. doi:10.3390/bios9030102 Crossref ● PubMed ● PMC ● Google Scholar | ||||
| ||||
| Brichacek, A. L., & Brown, C. M. (2018). Alkaline phosphatase: a potential biomarker for stroke and implications for treatment. Metabolic Brain Disease, 34(1), 3-19. doi:10.1007/s11011-018-0322-3 Crossref ● PubMed ● PMC ● Google Scholar | ||||
| ||||
| Davis, K., Imel, E. A., & Kelley, J. (2024). Hypophosphatemic rickets and short stature. Journal of Bone and Mineral Research, 39(7), 821-825. doi:10.1093/jbmr/zjae103 Crossref ● PubMed ● Google Scholar | ||||
| ||||
| Goud, K. Y., Reddy, K. K., Khorshed, A., Kumar, V. S., Mishra, R. K., Oraby, M., Ibrahim, A. H., Kim, H., & Gobi, K. V. (2021). Electrochemical diagnostics of infectious viral diseases: trends and challenges. Biosensors and Bioelectronics, 180, 113112. doi:10.1016/j.bios.2021.113112 Crossref ● PubMed ● PMC ● Google Scholar | ||||
| ||||
| Jiang, T., Zeng, Q., & He, J. (2023). Do alkaline phosphatases have great potential in the diagnosis, prognosis, and treatment of tumors? Translational Cancer Research, 12(10), 2932-2945. doi:10.21037/tcr-23-1190 Crossref ● PubMed ● PMC ● Google Scholar | ||||
| ||||
| International Agency for Research on Cancer (IARC). (1999). Re-evaluation of some organic chemicals, hydrazine and hydrogen peroxide. In: IARC monographs on the evaluation on the carcinogenic risks to humans (Vol. 71, pp. 749-768). Lyon: IARC. Retrieved from https://www.ncbi.nlm.nih.gov/books/NBK499014 Google Scholar | ||||
| ||||
| Kalligosfyri, P. M., Miglione, A., Esposito, A., Alhardan, R., Iula, G., Atay, I., Darwish, I. A., Kurbanoglu, S., & Cinti, S. (2025). Flexible screen-printed electrochemical sensor for alkaline phosphatase detection in biofluids for biomedical applications. ChemistryOpen, 14(6), e202500113. doi:10.1002/open.202500113 Crossref ● PubMed ● PMC ● Google Scholar | ||||
| ||||
| Kaplan, L. A., Pesce, A. J., & Kazmierczak, S. C. (1996). Clinical chemistry: theory, analysis, correlation. Sant Louis: Mosby. Google Scholar | ||||
| ||||
| Kozinetz, A. V., Tsymbalyuk, O. V., & Litvinenko, S. V. (2022). The first application of sensory structures based on photoelectric transducer for the study of enzymatic reactions. Studia Biologica, 16(4),3-18. doi:10.30970/sbi.1604.698 Crossref ● Google Scholar | ||||
| ||||
| Kozinetz, A., Sus, B., Tsymbalyuk, O., & Litvinenko, S. (2024). Photovoltaic recombination sensor as system for real-time determination of lactate dehydrogenase activity. Sensing and Bio-Sensing Research, 43, 100620. doi:10.1016/j.sbsr.2024.100620 Crossref ● Google Scholar | ||||
| ||||
| Li, Q., Wang, H., Wang, H., Deng, J., Cheng, Z., Lin, W., Zhu, R., Chen, S., Guo, J., Tang, L. V., & Hu, Y. (2023). Association between serum alkaline phosphatase levels in late pregnancy and the incidence of venous thromboembolism postpartum: a retrospective cohort study. EClinicalMedicine, 62, 102088. doi:10.1016/j.eclinm.2023.102088 Crossref ● PubMed ● PMC ● Google Scholar | ||||
| ||||
| Millán, J. L., & Whyte, M. P. (2016). Alkaline phosphatase and hypophosphatasia. Calcified Tissue International, 98(4), 398-416. doi:10.1007/s00223-015-0079-1 Crossref ● PubMed ● PMC ● Google Scholar | ||||
| ||||
| Nešvera, J., Rucká, L., & Pátek, M. (2015). Catabolism of phenol and its derivatives in bacteria: genes, their regulation, and use in the biodegradation of toxic pollutants. Advances in Applied Microbiology, 93, 107-160. doi:10.1016/bs.aambs.2015.06.002 Crossref ● PubMed ● Google Scholar | ||||
| ||||
| Pabis, A., & Kamerlin, S. C. L. (2016). Promiscuity and electrostatic flexibility in the alkaline phosphatase superfamily. Current Opinion in Structural Biology, 37, 14-21. doi:10.1016/j.sbi.2015.11.008 Crossref ● PubMed ● Google Scholar | ||||
| ||||
| Riancho, J. A. (2023). Diagnostic approach to patients with low serum alkaline phosphatase. Calcified Tissue International, 112(3), 289-296. doi:10.1007/s00223-022-01039-y Crossref ● PubMed ● Google Scholar | ||||
| ||||
| Sato, M., Saitoh, I., Kiyokawa, Y., Iwase, Y., Kubota, N., Ibano, N., Noguchi, H., Yamasaki, Y., & Inada, E. (2021). Tissue-nonspecific alkaline phosphatase, a possible mediator of cell maturation: towards a new paradigm. Cells, 10(12), 3338. doi:10.3390/cells10123338 Crossref ● PubMed ● PMC ● Google Scholar | ||||
| ||||
| Shaban, S. M., Byeok Jo, S., Hafez, E., Ho Cho, J., & Kim, D.-H. (2022). A comprehensive overview on alkaline phosphatase targeting and reporting assays. Coordination Chemistry Reviews, 465, 214567. doi:10.1016/j.ccr.2022.214567 Crossref ● Google Scholar | ||||
| ||||
| Sharma, U., Pal, D., & Prasad, R. (2014). Alkaline phosphatase: an overview. Indian Journal of Clinical Biochemistry, 29(3), 269-278. doi:10.1007/s12291-013-0408-y Crossref ● PubMed ● PMC ● Google Scholar | ||||
| ||||
| Si, F., Zhang, Y., Lu, J., Hou, M., Yang, H., & Liu, Y. (2023). A highly sensitive, eco-friendly electrochemical assay for alkaline phosphatase activity based on a photoATRP signal amplification strategy. Talanta, 252, 123775. doi:10.1016/j.talanta.2022.123775 Crossref ● PubMed ● Google Scholar | ||||
| ||||
| Simão, E. P., Frías, I. A. M., Andrade, C. A. S., & Oliveira, M. D. L. (2018). Nanostructured electrochemical immunosensor for detection of serological alkaline phosphatase. Colloids and Surfaces B: Biointerfaces, 171, 413-418. doi:10.1016/j.colsurfb.2018.07.056 Crossref ● PubMed ● Google Scholar | ||||
| ||||
| Su, W., Qiu, T., Zhang, M., Hao, C., Zeng, P., Huang, Z., Du, W., Yun, T., Xuan, Y., Zhang, L., Guo, Y., & Jiao, W. (2022). Systems biomarker characteristics of circulating alkaline phosphatase activities for 48 types of human diseases. Current Medical Research and Opinion, 38(2), 201-209. doi:10.1080/03007995.2021.2000715 Crossref ● PubMed ● Google Scholar | ||||
| ||||
| Tat, J., Heskett, K., Satomi, S., Pilz, R. B., Golomb, B. A., & Boss, G. R. (2021). Sodium azide poisoning: a narrative review. Clinical Toxicology, 59(8), 683-697. doi:10.1080/15563650.2021.1906888 Crossref ● PubMed ● PMC ● Google Scholar | ||||
| ||||
| Turan, S., Topcu, B., Gökce, İ., Güran, T., Atay, Z., Omar, A., Akçay, T., & Bereket, A. (2011). Serum alkaline phosphatase levels in healthy children and evaluation of alkaline phosphatase z-scores in different types of rickets. Journal of Clinical Research in Pediatric Endocrinology, 3(1), 7-11. doi:10.4274/jcrpe.v3i1.02 Crossref ● PubMed ● PMC ● Google Scholar | ||||
| ||||
| Villa-Suárez, J. M., García-Fontana, C., Andújar-Vera, F., González-Salvatierra, S., de Haro-Muñoz, T., Contreras-Bolívar, V., García-Fontana, B., & Muñoz-Torres, M. (2021). Hypophosphatasia: a unique disorder of bone mineralization. International Journal of Molecular Sciences, 22(9), 4303. doi:10.3390/ijms22094303 Crossref ● PubMed ● PMC ● Google Scholar | ||||
| ||||
| Vimalraj, S. (2020). Alkaline phosphatase: structure, expression and its function in bone mineralization. Gene, 754, 144855. doi:10.1016/j.gene.2020.144855 Crossref ● PubMed ● Google Scholar | ||||
| ||||
| Xiao, Y., Lu, J., Chang, W., Chen, Y., Li, X., Li, D., Xu, C., & Yang, H. (2019). Dynamic serum alkaline phosphatase is an indicator of overall survival in pancreatic cancer. BMC Cancer, 19(1), 785. doi:10.1186/s12885-019-6004-7 Crossref ● PubMed ● PMC ● Google Scholar | ||||
| ||||
| Young, D. S. (1997). Effects of drugs on clinical laboratory tests. Annals of Clinical Biochemistry, 34(6), 579-581. doi:10.1177/000456329703400601 Crossref ● PubMed ● Google Scholar | ||||
| ||||
| Zhang, H., Jia, Q., Piao, M., Chang, Y., Zhang, J., Tong, X., & Han, T. (2021). Screening of serum alkaline phosphatase and phosphate helps early detection of metabolic bone disease in extremely low birth weight infants. Frontiers in Pediatrics, 9, 642158. doi:10.3389/fped.2021.642158 Crossref ● PubMed ● PMC ● Google Scholar | ||||
Refbacks
- There are currently no refbacks.
Copyright (c) 2025 Sergii Litvinenko, Oleksii Kozinetz, Bogdan Sus, Olga Tsymbalyuk

This work is licensed under a Creative Commons Attribution 4.0 International License.
