INHIBITION POTENTIAL OF RHAMNOLIPID BIOSURFACTANT AGAINST CORYNESPORA CASSIICOLA – A PHYTOPATOGEN OF KING CHILLI
DOI: http://dx.doi.org/10.30970/sbi.1903.839
Abstract
Background. The king chilli, Capsicum chinense Jacq., is a chilli variant well-known as one of the world’s hottest chillies while Corynespora cassiicola is a fungal pathogen that causes severe rotting in different parts of the crop and affects the fruit yield and market values. This study was attempted for management of C. cassiicola by applying rhamnolipid biosurfactant extracted from bacterial strain Pseudomonas aeruginosa SR17.
Materials and Methods. The antifungal potential of crude and column-purified biosurfactant was studied against C. cassiicola; EC50 and IC50 values were calculated accordingly. The in vivo action of rhamnolipid on germination of king chilli seeds infected by the fungus was assayed by calculating the percentage of germination and vigour index of the seedling. The in planta antifungal efficacy of crude rhamnolipid was investigated by preventive and curative treatments. Management of post-harvest infection of ripe king chilli fruit was evaluated by measuring the percentage of disease index of rhamnolipid.
Results and Discussion. The EC50 values for crude and column purified biosurfactant were calculated as 489.39±1.58 mg/L and 438.18±2.55 mg/L, respectively, against the mycelia of C. cassiicola. The minimum inhibitory concentrations (MIC) for crude and column-purified biosurfactants were 400 mg/L and 200 mg/L, respectively, against the spores of C. cassiicola. The germination percentage of seedlings increased up to 55 % after biosurfactant treatment of C. cassiicola infected seeds. The disease percentages reduced up to 49±1 % and 51.3±1.55 % after performing curative and preventive in planta experiments in king chilli plants infected with C. cassiicola. The IC50 value of rhamnolipid was calculated as 895.74mg/L in post-harvest disease management of king chilli fruits.
Conclusions. The rhamnolipid extracted from P. aeruginosa SR17 exhibited in vitro and in-planta efficacy against C. cassiicola. The application of rhamnolipid was also found to be effective in reducing post-harvest loss of stored king chilli fruit.
Keywords
References
| Adetunji, C. O., Afolabi, I. S., Adetunji, & J. B. (2019). Effect of rhamnolipid-Aloe vera gel edible coating on post-harvest control of rot and quality parameters of 'Agege Sweet' orange. Agriculture and Natural Resources, 53, 364-372. doi:10.34044/j.anres.2019.53.4.06 Crossref ● Google Scholar | ||||
| ||||
| Aguiar, F. M., Vallad, G. E., Timilsina S., Veloso, J. S., Fonseca, M. E. N., Boiteux, L. S., & Reis, A. (2022). Phylogenetic network analysis of South and North American Corynespora cassiicola isolates from tomato, cucumber, and novel hosts. European Journal of Plant Pathology, 163(3), 657-671. doi:10.1007/s10658-022-02505-x Crossref ● Google Scholar | ||||
| ||||
| Ananthi, M., Selvaraju, P., & Sundaralingam, K. (2014). Effect of bio-priming using bio-control agents on seed germination and seedling vigour in chilli (Capsicum annuum L.) 'PKM 1'. The Journal of Horticultural Science and Biotechnology, 89(5), 564-568. doi:10.1080/14620316.2014.11513121 Crossref ● Google Scholar | ||||
| ||||
| Baiyee, B., Pornsuriya, C., Ito, S. I., & Sunpapao, A. (2019). Trichoderma spirale T76-1 displays biocontrol activity against leaf spot on lettuce (Lactuca sativa L.) caused by Corynespora cassiicola or Curvularia aeria. Biological Control, 129, 195-200. doi:10.1016/j.biocontrol.2018.10.018 Crossref ● Google Scholar | ||||
| ||||
| Benson, A., Ram, G., Truu, J., Truu, M., Henry, A. J., & Melvin Joe, M. (2022). Seed priming with biosurfactant and biosurfactant producing bacteria induces resistance against Ralstonia solanacearum in tomato plants. Biocontrol Science and Technology, 32(8), 1027-1033. doi:10.1080/09583157.2022.2063258 Crossref ● Google Scholar | ||||
| ||||
| Bora, A., Nakhuru, K. S., Gogoi, B. J., Chattopadhyay, P., & Dwivedi, S. K. (2020). Ethnic uses and commercial applications of Capsicum assamicum (Bhut jolokia). In: P. Thangaraj (Ed.), Phytomedicine: research and development (pp. 1-6). Boca Raton: CRC Press. doi:10.1201/9781003014898-1 Crossref ● Google Scholar | ||||
| ||||
| Botcazon, C., Bergia, T., Lecouturier, D., Dupuis, C., Rochex, A., Acket, S., Nicot, P., Lecère, V., Sarazin, C., & Rippa, S. (2022). Rhamnolipids and fengycins, very promising amphiphilic antifungal compounds from bacteria secretomes, act on Sclerotiniaceae fungi through different mechanisms. Frontiers in Microbiology, 13, 977633. doi:10.3389/fmicb.2022.977633 Crossref ● PubMed ● PMC ● Google Scholar | ||||
| ||||
| Chanu, W. K., & Singh, C. B. (2024). King chili: a future potential source of pharmacological applications. In: T. A. Singh, P. K. Sarangi, & Ch. B. Singh (Eds.), High-value plants. Novel insights and biotechnological advances (pp. 117-138). New York: Apple Academic Press. doi:10.1201/9781003457572-6 Crossref ● Google Scholar | ||||
| ||||
| Crouzet, J., Arguelles-Arias, A., Dhondt-Cordelier, S., Cordelier, S., Pršić, J., Hoff, G., Mazeyrat-Gourbeyre, F., Baillieul, F., Clément, C., Ongena, M., & Dorey, S. (2020). Biosurfactants in plant protection against diseases: rhamnolipids and lipopeptides case study. Frontiers in Bioengineering and Biotechnology, 8, 1014. doi:10.3389/fbioe.2020.01014 Crossref ● PubMed ● PMC ● Google Scholar | ||||
| ||||
| Dabaghi, S., Ataei, S. A., & Taheri, A. (2023). Production of rhamnolipid biosurfactants in solid-state fermentation: process optimization and characterization studies. BMC Biotechnology, 23(1), 2. doi:10.1186/s12896-022-00772-4 Crossref ● PubMed ● PMC ● Google Scholar | ||||
| ||||
| Dixon, L. J., Schlub, R. L., Pernezny, K., & Datnoff, L. E. (2009). Host specialization and phylogenetic diversity of Corynespora cassiicola. Phytopathology, 99(9), 1015-1027. doi:10.1094/phyto-99-9-1015 Crossref ● PubMed ● Google Scholar | ||||
| ||||
| Ferreira-Saab, M., Formey, D., Torres, M., Aragón, W., Padilla, E. A., Tromas, A., Sohlenkamp, C., Schwan-Estrada, K. R. & Serrano, M. (2018). Compounds released by the biocontrol yeast Hanseniaspora opuntiae protect plants against Corynespora cassiicola and Botrytis cinerea. Frontiers in Microbiology, 9, 1596. doi:10.3389/fmicb.2018.01596 Crossref ● PubMed ● PMC ● Google Scholar | ||||
| ||||
| Gayathiri, E., Prakash, P., Karmegam, N., Varjani, S., Awasthi, M. K., & Ravindran, B. (2022). Biosurfactants: potential and eco-friendly material for sustainable agriculture and environmental safety - a review. Agronomy, 12(3), 662. doi:10.3390/agronomy12030662 Crossref ● Google Scholar | ||||
| ||||
| Goswami, M., & Deka, S. (2019). Biosurfactant production by a rhizosphere bacteria Bacillus altitudinis MS16 and its promising emulsification and antifungal activity. Colloids and Surfaces B: Biointerfaces, 178, 285-296. doi:10.1016/j.colsurfb.2019.03.003 Crossref ● PubMed ● Google Scholar | ||||
| ||||
| Goswami, M., & Deka, S. (2020). Isolation of a novel rhizobacteria having multiple plant growth promoting traits and antifungal activity against certain phytopathogens. Microbiological Research, 240, 126516. doi:10.1016/j.micres.2020.126516 Crossref ● PubMed ● Google Scholar | ||||
| ||||
| Guinness Book of World Records (2006). Hottest Spice. www. guinnessworldrecords.com | ||||
| ||||
| Hosseini, S., Sharifi, R., Habibi, A., & Ali, Q. (2024). Molecular identification of rhamnolipids produced by Pseudomonas oryzihabitans during biodegradation of crude oil. Frontiers in Microbiology, 15, 1459112. doi:10.3389/fmicb.2024.1459112 Crossref ● PubMed ● PMC ● Google Scholar | ||||
| ||||
| Jamir, T., & Jha, K. K. (2024). Constraints perceived by the farmers in the adoption of sustainable cultivation practices of Naga king chilli. The Journal of Research Angrau, 52(1), 154-157. doi:10.58537/jorangrau.2024.52.1.17 Crossref ● Google Scholar | ||||
| ||||
| Jibrin, M. O., Lu, Q., Jones, J., & Zhang, S. (2020). Surfactants in plant disease management: a brief review and case studies. Plant Pathology, 70(3), 495-510. doi:10.1111/ppa.13318 Crossref ● Google Scholar | ||||
| ||||
| Karamchandani, B. M., Maurya, P. A., Dalvi, S. G. Waghmode, S, Sharma D., Rahman, P. K. S. M., Ghormade, V., & Satpute S. K. (2022). Synergistic activity of rhamnolipid biosurfactant and nanoparticles synthesized using fungal origin chitosan against phytopathogens. Frontiers of Bioengineering and Biotechnology, 10, 917105. doi:10.3389/fbioe.2022.917105 Crossref ● PubMed ● PMC ● Google Scholar | ||||
| ||||
| Lahkar, J., Goswami, D., Deka, S., & Ahmed, G. (2018). Novel approaches for application of biosurfactant produced by Pseudomonas aeruginosa for biocontrol of Colletotrichum capsici responsible for anthracnose disease in chilli. European Journal of Plant Pathology, 150(1), 57-71. doi:10.1007/s10658-017-1252-3 Crossref ● Google Scholar | ||||
| ||||
| Li, D., Tao, W., Yu, D., & Li, S. (2022). Emulsifying properties of rhamnolipids and their in vitro antifungal activity against plant pathogenic fungi. Molecules, 27(22). 7746. doi:10.3390/ molecules27227746 Crossref ● PubMed ● Google Scholar | ||||
| ||||
| Li, S., Zhou, H., Chen C., Zeng, F., Zheng G., Wang, X., Zhang, C., (2023). Rhamnolipids amendment improves soil properties and enhances microecological functions in the saline-alkali soil. Environmental Engineering Research, 28(4), 220234. doi:10.4491/eer.2022.234 Crossref ● Google Scholar | ||||
| ||||
| Ling, L., Feng, L., Li, Y., Yue, R., Wang, Y., & Zhou, Y. (2024). Endophytic fungi volatile organic compounds as crucial biocontrol agents used for controlling fruit and vegetable postharvest diseases. Journal of Fungi, 10(5), 332. doi:10.3390/jof10050332 Crossref ● PubMed ● PMC ● Google Scholar | ||||
| ||||
| Malakar, C., Kashyap, B., Bhattacharjee, S., Chandra Kalita, M., Mukherjee, A. K., & Deka, S. (2024). Antibiofilm and wound healing efficacy of rhamnolipid biosurfactant against pathogenic bacterium Staphylococcus aureus. Microbial Pathogenesis, 195, 106855. doi:10.1016/j.micpath.2024.106855 Crossref ● PubMed ● Google Scholar | ||||
| ||||
| Malakar, S., Sarkar, S., & Kumar, N. (2019). King chilli (Capsicum chinense Jacq.), the indias hottest chilli - an overview. Journal of Applied Horticulture, 21(1), 53-56. doi:10.37855/jah.2019.v21i01.09 Crossref ● Google Scholar | ||||
| ||||
| Moo-Koh, F. A., Cristóbal-Alejo, J., Tun-Suárez, J. M., Medina-Baizabal, I. L., Arjona-Cruz, A. A., & Gamboa-Angulo, M. (2022). Activity of aqueous extracts from native plants of the Yucatan Peninsula against fungal pathogens of tomato in vitro and from Croton chichenensis against Corynespora cassiicola on tomato. Plants, 11(21), 2821. doi:10.3390/plants11212821 Crossref ● PubMed ● PMC ● Google Scholar | ||||
| ||||
| Onlamool, T., Saimmai, A., & Maneerat, S. (2023). Antifungal activity of rhamnolipid biosurfactant produced by Pseudomonas aeruginosa A4 against plant pathogenic fungi. Trends In Sciences, 20(3), 6524. doi:10.48048/tis.2023.6524 Crossref ● Google Scholar | ||||
| ||||
| Patowary, R., Patowary, K., Kalita, M. C., & Deka, S. (2016). Utilization of paneer whey waste for cost-effective production of rhamnolipid biosurfactant. Applied Biochemistry and Biotechnology, 180(3), 383-399. doi:10.1007/s12010-016-2105-9 Crossref ● PubMed ● Google Scholar | ||||
| ||||
| Pierre, E., Shaw, E., Corr, B., Pageau, K., & Rippa, S. (2025). Applications of rhamnolipid biosurfactants in agriculture. Plant Stress, 15, 100749. doi:10.1016/j.stress.2025.100749 Crossref ● Google Scholar | ||||
| ||||
| Robineau, M., Le Guenic, S., Sanchez, L., Chaveriat, L., Lequart, V., Joly, N., Calonne, M., Jacquard, C., Declerck, S., Martin, P., Dorey, S., & Ait Barka, E. (2020). Synthetic mono-rhamnolipids display direct antifungal effects and trigger an innate immune response in tomato against Botrytis cinerea. Molecules, 25(14), 3108. doi:10.3390/molecules25143108 Crossref ● PubMed ● PMC ● Google Scholar | ||||
| ||||
| Rodríguez-Moraga, N., Ramos-Martín, F., Buchoux, S., Rippa, S., D'amelio, N., & Sarazin, C. (2023). The effect of rhamnolipids on fungal membrane models as described by their interactions with phospholipids and sterols: an in silico study. Frontiers in Chemistry, 11, 1124129. doi:10.3389/fchem.2023.1124129 Crossref ● PubMed ● PMC ● Google Scholar | ||||
| ||||
| Safari, P., Hosseini, M., Lashkarbolooki, M., Ghorbani, M., & Najafpour, G. (2023). Evaluation of surface activity of rhamnolipid biosurfactants produced from rice bran oil through dynamic surface tension. Journal of Petroleum Exploration and Production Technology, 13(10), 2139-2153. doi:10.1007/s13202-023-01660-z Crossref ● Google Scholar | ||||
| ||||
| Sarma, N., Deka, H., & Deka, S. (2024). Rhamnolipid biosurfactant as robust inhibiting agent for Colletotrichum gloeosporioides-pathogen of Capsicum chinense and evaluation of general welfare of the host plant. Journal of Mycopathological Research, 62(1), 185-195. doi:10.57023/jmycr.62.1.2024.185 Crossref ● Google Scholar | ||||
| ||||
| Sen, S., Borah, S. N., Bora, A., & Deka, S. (2017). Production, characterization, and antifungal activity of a biosurfactant produced by Rhodotorula babjevae YS3. Microbial Cell Factories, 16(1), 95. doi:10.1186/s12934-017-0711-z Crossref ● PubMed ● PMC ● Google Scholar | ||||
| ||||
| Silva, M. da G. C., Medeiros, A. O., Converti, A., Almeida, F. C. G., & Sarubbo, L. A. (2024). Biosurfactants: promising biomolecules for agricultural applications. Sustainability, 16(1), 449. doi:10.3390/su16010449 Crossref ● Google Scholar | ||||
| ||||
| Simões, L. A., Fernandes, N. A. T., dos Santos Junior, N. A., & Dias, D. R. (2023). Biosurfactants and their benefits for seeds. In: R. Aslam, M. Mobin, J. Aslam, & S. Zehra (Eds.), Advancements in biosurfactants research (pp. 309-329). Cham: Springer International Publishing. doi:10.1007/978-3-031-21682-4_16 Crossref ● Google Scholar | ||||
| ||||
| Soliman, E. A., Abdelaziz, A. M., El Dorry, M.-A., & Attia, M. S. (2024). Protective role of biomass endophytic fungi to enhance potato plant responses against wilt disease caused by Ralstonia solanacearum. Physiological and Molecular Plant Pathology, 131, 102287. doi:10.1016/j.pmpp.2024.102287 Crossref ● Google Scholar | ||||
| ||||
| Talukdar, J., Saikia, A. K., & Borah. P. (2015). Survey and detection of the diseases of Bhut Jolokia (Capsicum chinense Jacq.) in Assam. Journal Crop and Weed, 11, 186-192. Google Scholar | ||||
| ||||
| Thakur, P., Saini, N. K., Thakur, V. K., Gupta, V. K., Saini, R. V., & Saini, A. K. (2021). Rhamnolipid the glycolipid biosurfactant: emerging trends and promising strategies in the field of biotechnology and biomedicine. Microbial Cell Factories, 20(1), 1-15. doi:10.1186/s12934-020-01497-9 Crossref ● PubMed ● PMC ● Google Scholar | ||||
| ||||
| Wittgens. A., & Rosenau, F. (2020). Heterologous rhamnolipid biosynthesis: advantages, challenges, and the opportunity to produce tailor-made rhamnolipids. Frontiers in Bioengineering and Biotechnology, 8, 594010. doi:10.3389/fbioe.2020.594010 Crossref ● PubMed ● PMC ● Google Scholar | ||||
| ||||
| Younesikelaki, F. S., Ebrahimzadeh, M. H., Desfardi, M. K., Banala, M., Marka, R., & Nanna, R.S. (2016). Optimization of seed surface sterilization method and in vitro seed germination in Althaea officinalis (L.) - an important medicinal herb. Journal of Science and Technology, 9(28), 16. doi:10.17485/ijst/2016/v9i28/90896 Crossref ● Google Scholar | ||||
| ||||
| Zhang, S. L., Sun, Q., Cao, Y., Ji, Y. P., Zhang, Y. J., Herrera-Balandrano, D. D., ... & Laborda, P. (2023). Biocontrol of Corynespora cassiicola in soybean using a new phenethyl alcohol-producing Meyerozyma caribbica strain. Biological Control, 184, 105287. doi:10.1016/j.biocontrol.2023.105287 Crossref ● Google Scholar | ||||
| ||||
| Zhao, Q., Shi, Y., Wang, Y., Xie, X., Li, L., Guo, L., Chai, A., & Li, B. (2021). Quantifying airborne dispersal route of Corynespora cassiicola in greenhouses. Frontiers in Microbiology, 12, 716758. doi:10.3389/fmicb.2021.716758 Crossref ● PubMed ● PMC ● Google Scholar | ||||
| ||||
| Zhao, F., Wang, B., Yuan, M., & Ren, S. (2022). Comparative study on antimicrobial activity of mono-rhamnolipid and di-rhamnolipid and exploration of cost-effective antimicrobial agents for agricultural applications. Microbial Cell Factories, 21(1). doi:10.1186/s12934-022-01950-x Crossref ● PubMed ● PMC ● Google Scholar | ||||
| ||||
| Zhou, J., Miao, S., Yang, S., Liu, J., Gang, H., & Mu, B. (2023). Quantitative determination of rhamnolipid using HPLC-UV through carboxyl labeling. Biotechnology and Applied Biochemistry, 70(6), 1806-1816. doi:10.1002/bab.2483 Crossref ● PubMed ● Google Scholar | ||||
Refbacks
- There are currently no refbacks.
Copyright (c) 2025 Nilam Sarma, Suresh Deka, Hemen Deka

This work is licensed under a Creative Commons Attribution 4.0 International License.
