EFFECT OF OPUNTIA FICUS-INDICA FRUIT NANO AND ALCOHOLIC EXTRACTS IN INDUCED-ATHEROSCLEROTIC RATS

Ahmed Ali Al-Alfayyadh, Nashwan Ibrahem Al-Lehebe, Nameer Saadallah Ezzat


DOI: http://dx.doi.org/10.30970/sbi.1904.850

Abstract


Background. Atherosclerosis is a serious chronic disease that affects many people of all ages and requires continuous medication. To reduce the risk of side effects from these medications, the search for a less harmful natural treatment continues.
Materials and Methods. This study was designed to isolate an alcoholic extract from the fruit Opuntia ficus-indica (prickly pear), which was analyzed using high-performance liquid chromatography (HPLC). Silver nanoparticles were also prepared by loading silver nitrate onto the alcoholic extract, and their formation was verified by monitoring colour change, FESEM, and FT-IR, respectively. The effects of these extracts were studied in male atherosclerotic rats by assessing glucose, lipid profile, liver, and kidney function as well as troponin, myoglobin, and creatine kinase.
Results. HPLC analysis of the alcoholic extract showed polyphenol compounds: gallic acid, quercetin, ferulic acid, rutin, kaempferol, cinnamic acid, tannic acid at concentrations of 88.9, 80.6, 45.2, 74.6, 50.6, 12.6, 20.7 μg/kg of prickly pear fruit, respectively. Green synthesis of silver nanoparticles produced a distinct colour change when the mixture was kept in a cold, dark place. FESEM indicated the presence of spherical nanoparticles with a size of 25 nm. The FT-IR also showed peak shifts when comparing the alcoholic extract with the nano-extract. The alcoholic extract produced a lower effect on lipid profiles, cardiac markers, creatinine levels, liver functions, and lipid peroxidation compared to the atherosclerotic control. Also, the nano-extract reduced the levels of kidney and liver function tests, as well as lipid peroxidation, lipid profiles, troponin, and creatine kinase-MB. The results also showed an increase in glutathione levels in atherosclerotic rats treated with the extracts compared to the untreated atherosclerotic control group.
Conclusion. High levels of polyphenol compounds were found in the alcoholic extract of prickly pear fruit. The results demonstrated that silver nanoparticle extract was more effective than the alcoholic extract in most parameters. These findings suggest that such extracts may reduce symptoms or complications of this disease.


Keywords


atherosclerosis, nanoparticles, troponin I, creatine kinase, myoglobin

Full Text:

PDF

References


Adams, J. E., Abendschein, D. R., & Jaffe, A. S. (1993). Biochemical markers of myocardial injury. Is MB creatine kinase the choice for the 1990s? Circulation, 88(2), 750-763. doi:10.1161/01.cir.88.2.750
CrossrefPubMedGoogle Scholar

Adefegha, S. A., Ogundare, P. O., Oboh, G., Esatbeyoglu, T., & Papenbrock, J. (2025). An overview on the mechanisms of encapsulation of polyphenols used to help fight diabetes mellitus. Discover Food, 5(1), 185. doi:10.1007/s44187-025-00455-x
CrossrefGoogle Scholar

Al-Bajari, S. A., AL-Lehebe, N. I., & AL-Alsadoon, L. H. (2019). Study of serum antioxidants, trace elements and leptin levels in epilepsy patients. Indian Journal of Public Health Research & Development, 10(2), 784. doi:10.5958/0976-5506.2019.00390.5
CrossrefGoogle Scholar

Al-Naqeb, G., Fiori, L., Ciolli, M., & Aprea, E. (2021). Prickly pear seed oil extraction, chemical characterization and potential health benefits. Molecules, 26(16), 5018. doi:10.3390/molecules26165018
CrossrefPubMedPMCGoogle Scholar

Alnuaimi, M. T., Hamdan, N. T., Abdalraheem, E., & Aljanabi, Z. Z. (2019). Biodegradation of malathion pesticide by silver bio-nanoparticles of Bacillus licheniformis extracts. Research on Crops, 20(spl), 79-84. doi:10.31830/2348-7542.2019.138
CrossrefGoogle Scholar

Arnold, N., Lechner, K., Waldeyer, C., Shapiro, M. D., & Koenig, W. (2021). Inflammation and cardiovascular disease: the future. European Cardiology Review, 16, e20. doi:10.15420/ecr.2020.50
CrossrefPubMedPMCGoogle Scholar

Aruwa, C. E., Amoo, S. O., & Kudanga, T. (2018). Opuntia (Cactaceae) plant compounds, biological activities and prospects - a comprehensive review. Food Research International, 112, 328-344. doi:10.1016/j.foodres.2018.06.047
CrossrefPubMedGoogle Scholar

Bin Bakri, M. K., Rahman, Md. R., Khui, P. L. N., Jayamani, E., & Khan, A. (2021). Use of sustainable polymers to make green composites. In: M. R. Rahman (Ed.), Advances in sustainable polymer composites (pp. 109-129). Elsevier. doi:10.1016/b978-0-12-820338-5.00005-9
CrossrefGoogle Scholar

Burtis, C. A., Ashwood, E. R., & Tietz, N. W. (1999). Tietz textbook of clinical chemistry. Philadelphia: W.B. Saunders.
Google Scholar

Cases, A., & Coll, E. (2005). Dyslipidemia and the progression of renal disease in chronic renal failure patients. Kidney International, 68, S87-S93. doi:10.1111/j.1523-1755.2005.09916.x
CrossrefPubMedGoogle Scholar

Charo, I. F., & Taub, R. (2011). Anti-inflammatory therapeutics for the treatment of atherosclerosis. Nature Reviews Drug Discovery, 10(5), 365-376. doi:10.1038/nrd3444
CrossrefPubMedPMCGoogle Scholar

Deb, S., Puthanveetil, P., & Sakharkar, P. (2018). A population-based cross-sectional study of the association between liver enzymes and lipid levels. International Journal of Hepatology, 2018(1), 1286170. doi:10.1155/2018/1286170
CrossrefPubMedPMCGoogle Scholar

Degroote, J., Wang, W., Vergauwen, H., De Smet, S., Van Ginneken, C., & Michiels, J. (2019). Impact of a dietary challenge with peroxidized oil on the glutathione redox status and integrity of the small intestine in weaned piglets. Animal, 13(8), 1641-1650. doi:10.1017/s1751731118003166
CrossrefPubMedGoogle Scholar

Esquivel-Gutiérrez, E. R., Manzo-Avalos, S., Peña-Montes, D. J., Saavedra-Molina, A., Morreeuw, Z. P., & Reyes, A. G. (2021). Hypolipidemic and antioxidant effects of Guishe extract from Agave lechuguilla, a Mexican plant with biotechnological potential, on streptozotocin-induced diabetic male rats. Plants, 10(11), 2492. doi:10.3390/plants10112492
CrossrefPubMedPMCGoogle Scholar

Friedewald, W. T., Levy, R. I., & Fredrickson, D. S. (1972). Estimation of the concentration of low-density lipoprotein cholesterol in plasma, without use of the preparative ultracentrifuge. Clinical Chemistry, 18(6), 499-502. doi:10.1093/clinchem/18.6.499
CrossrefPubMedGoogle Scholar

Gabani, M., Shapiro, M. D., & Toth, P. P. (2023). The role of triglyceride-rich lipoproteins and their remnants in atherosclerotic cardiovascular disease. European Cardiology Review, 18, e56. doi:10.15420/ecr.2023.16
CrossrefPubMedPMCGoogle Scholar

George, D., & Mallery, P. (2024). IBM SPSS statistics 29 step by step: a simple guide and reference. New York: Routledge. doi:10.4324/9781032622156
CrossrefGoogle Scholar

Haas, M. E., Attie, A. D., & Biddinger, S. B. (2013). The regulation of ApoB metabolism by insulin. Trends in Endocrinology & Metabolism, 24(8), 391-397. doi:10.1016/j.tem.2013.04.001
CrossrefPubMedPMCGoogle Scholar

Huang, S., Yang, X., Ma, J., Li, C., Wang, Y., & Wu, Z. (2025). Ethanol extract of propolis relieves exercise-induced fatigue via modulating the metabolites and gut microbiota in mice. Frontiers in Nutrition, 12, 1549913. doi:10.3389/fnut.2025.1549913
CrossrefPubMedPMCGoogle Scholar

Iftikhar, K., Siddique, F., Ameer, K., Arshad, M., Kharal, S., Mohamed Ahmed, I. A., Yasmin, Z., & Aziz, N. (2023). Phytochemical profiling, antimicrobial, and antioxidant activities of hydroethanolic extracts of prickly pear (Opuntia ficus indica) fruit and pulp. Food Science & Nutrition, 11(4), 1916-1930. doi:10.1002/fsn3.3226
CrossrefPubMedPMCGoogle Scholar

Kalimuthu, K., Babu, R. S., Venkataraman, D., Bilal, M., & Gurunathan, S. (2008). Biosynthesis of silver nanocrystals by Bacillus licheniformis. Colloids and surfaces B: Biointerfaces, 65(1), 150-153. doi:10.1016/j.colsurfb.2008.02.018
CrossrefPubMedGoogle Scholar

Kassim, H. (2012). Effect of fenugreek seeds extract on liver cells and enzymes of albino male. Iraqi Journal of Science, 53(1), 62-67.
Google Scholar

Kaur, M., Kaur, A., & Sharma, R. (2012). Pharmacological actions of Opuntia ficus indica: a review. Journal of Applied Pharmaceutical Science, 2(7), 15-18. doi:10.7324/japs.2012.2703
CrossrefGoogle Scholar

Kostner, G. (1976). Letter: enzymatic determination of cholesterol in high-density lipoprotein fractions prepared by polyanion precipitation. Clinical Chemistry, 22(5), 695-695. doi:10.1093/clinchem/22.5.695a
CrossrefPubMedGoogle Scholar

Muslih, R., Al-Nimer, O., & Al-Zamely, M. (2002). The level of malondialdehyde after activation with (H2O2 and CuSO4) and inhibited by desferoxamine and molsidomine in the serum of patients with acute myocardial infection. National Journal of Chemistry, 5, 139-148.
Google Scholar

Pikto-Pietkiewicz, W., Wolkowska, K., & Pasierski, T. (2005). Treatment of dyslipidemia in patients with diabetes mellitus. Pharmacological Reports, 57, 10-19. Retrieved from http://if-pan.krakow.pl/pjp/pdf/2005/s_10.pdf
PubMedGoogle Scholar

Pizzino, G., Irrera, N., Cucinotta, M., Pallio, G., Mannino, F., Arcoraci, V., Squadrito, F., Altavilla, D., & Bitto, A. (2017). Oxidative stress: harms and benefits for human health. Oxidative Medicine and Cellular Longevity, 2017(1), 8416763. doi:10.1155/2017/8416763
CrossrefPubMedPMCGoogle Scholar

Poggio, P., Branchetti, E., Grau, J. B., Lai, E. K., Gorman, R. C., Gorman, J. H., Sacks, M. S., Bavaria, J. E., & Ferrari, G. (2014). Osteopontin-CD44v6 interaction mediates calcium deposition via phospho-Akt in valve interstitial cells from patients with noncalcified aortic valve sclerosis. Arteriosclerosis, Thrombosis, and Vascular Biology, 34(9), 2086-2094. doi:10.1161/atvbaha.113.303017
CrossrefPubMedPMCGoogle Scholar

Ram, H., Jatwa, R., & Purohit, A. (2014). Antiatherosclerotic and cardioprotective potential of Acacia senegal seeds in diet-induced atherosclerosis in rabbits. Biochemistry Research International, 2014(1), 436848. doi:10.1155/2014/436848
CrossrefPubMedPMCGoogle Scholar

Rasoulpour, R., Afsharifar, A., Izadpanah, K., & Aminlari, M. (2017). Purification and characterization of an antiviral protein from prickly pear (Opuntia ficus-indica (L.) Miller) cladode. Crop Protection, 93, 33-42. doi:10.1016/j.cropro.2016.11.005
CrossrefGoogle Scholar

Roghani, M., & Baluchnejadmojarad, T. (2010). Hypoglycemic and hypolipidemic effect and antioxidant activity of chronic epigallocatechin-gallate in streptozotocin-diabetic rats. Pathophysiology, 17(1), 55-59. doi:10.1016/j.pathophys.2009.07.004
CrossrefPubMedGoogle Scholar

Salih, B. D., Ali, A. H., Alheety, M. A., Mahmood, A. R., Karadağ, A., & Aydın, A. (2019). Biosynthesis of Ag nanospheres using waste phoenix dactylifera argonne: a prospective anticancer and antibacterial. Materials Research Express, 6(10), 105063. doi:10.1088/2053-1591/ab3bad
CrossrefGoogle Scholar

Sedlak, J., & Lindsay, R. H. (1968). Estimation of total, protein-bound, and nonprotein sulfhydryl groups in tissue with Ellman's reagent. Analytical Biochemistry, 25, 192-205. doi:10.1016/0003-2697(68)90092-4
CrossrefPubMedGoogle Scholar

Shrestha, S., Wu, B. J., Guiney, L., Barter, P. J., & Rye, K.-A. (2018). Cholesteryl ester transfer protein and its inhibitors. Journal of Lipid Research, 59(5), 772-783. doi:10.1194/jlr.r082735
CrossrefPubMedPMCGoogle Scholar

Soehnlein, O., & Libby, P. (2021). Targeting inflammation in atherosclerosis - from experimental insights to the clinic. Nature Reviews Drug Discovery, 20(8), 589-610. doi:10.1038/s41573-021-00198-1
CrossrefPubMedPMCGoogle Scholar

Sprague, A. H., & Khalil, R. A. (2009). Inflammatory cytokines in vascular dysfunction and vascular disease. Biochemical Pharmacology, 78(6), 539-552. doi:10.1016/j.bcp.2009.04.029
CrossrefPubMedPMCGoogle Scholar

Sridhar, A., Ponnuchamy, M., Kumar, P. S., Kapoor, A., Vo, D.-V. N., & Prabhakar, S. (2021). Techniques and modeling of polyphenol extraction from food: a review. Environmental Chemistry Letters, 19(4), 3409-3443. doi:10.1007/s10311-021-01217-8
CrossrefPubMedPMCGoogle Scholar

Taha, I. (2022). Effect of active compounds for Quercus fruit on some biochemical parameters and tissue aorta in induced atherosclerosis rats. Scientific Journal for the Faculty of Science-Sirte University, 2(2), 62-72. doi:10.37375/sjfssu.v2i2.84
CrossrefGoogle Scholar

Thygesen, K., Alpert, J. S., & White, H. D. (2007). Universal definition of myocardial infarction. Journal of the American College of Cardiology, 50(22), 2173-2195. doi:10.1016/j.jacc.2007.09.011
CrossrefPubMedGoogle Scholar

Tohirova, J., & Shernazarov, F. (2022). Atherosclerosis: causes, symptoms, diagnosis, treatment and prevention. Science and Innovation, 1(D5), 7-12.
Google Scholar

Webster, K. (2009). Mitochondrial death channels. American Scientist, 97(5), 384. doi:10.1511/2009.80.384
CrossrefPubMedPMCGoogle Scholar

Wolf, D., & Ley, K. (2019). Immunity and inflammation in atherosclerosis. Circulation Research, 124(2), 315-327. doi:10.1161/circresaha.118.313591
CrossrefPubMedPMCGoogle Scholar

Yokoyama, H., Masuyama, T., Tanaka, Y., Tsubakihara, I., Kondo, K., & Yoshinari, K. (2022). Acyl-CoA:diacylglycerol acyltransferase 1 inhibition in the small intestine increases plasma transaminase activity via the activation of protein kinase C pathway. The Journal of Toxicological Sciences, 47(1), 19-30. doi:10.2131/jts.47.19
CrossrefPubMedGoogle Scholar

Zern, T. L., West, K. L., & Fernandez, M. L. (2003). Grape polyphenols decrease plasma triglycerides and cholesterol accumulation in the aorta of ovariectomized guinea pigs. The Journal of Nutrition, 133(7), 2268-2272. doi:10.1093/jn/133.7.2268
CrossrefPubMedGoogle Scholar


Refbacks

  • There are currently no refbacks.


Copyright (c) 2025 Ahmed Ali Al-Alfayyadh, Nashwan Ibrahem Al-Lehebe, Nameer Saadallah Ezzat

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.