DOMINANCE STRUCTURE OF THE COMMUNITIES OF SOIL AND LITTER MESOFAUNA IN OLD-GROWTH FORESTS OF THE UKRAINIAN ROZTOCHCHIA
DOI: http://dx.doi.org/10.30970/sbi.1902.829
Abstract
Background. The structure of soil and litter invertebrate mesofauna communities in old-growth forest ecosystems is important for understanding the mechanisms of their stability. Our research is focused on establishing the taxonomic and functional diversity of mesofauna communities in old-growth forests of the Ukrainian Roztochchia. The aim of the study was to determine the taxonomic diversity of soil-litter invertebrates with the subsequent identification of the dominance structure of their communities on a natural old-growth forest site.
Materials and Methods. Mesofauna survey was carried out on a model plot of the natural old-growth oak-beech-pine forest within the Piasetskyi typological forest site on the area of Roztochchia Nature Reserve. The sampling of soil and litter mesofauna was accomplished in 2023 by means of soil layer excavation to the depth of its distribution, manual analysis of soil and litter samples, and Barber pitfall traps. Material analysis was carried out by standard in soil zoology methods.
Results and Discussion. The taxonomic diversity of the community of soil-litter mesofauna of the studied old-growth oak-beech-pine forest includes more than 60 species of invertebrates which belong to 25 families from seven classes of three phyla. In terms of number, the trophic group of predators is dominant in forest litter (49 %), in particular Chilopoda and Staphylinidae; phytophages dominate in the soil (55 %), being represented mostly by Elateridae and Curculionidae larvae. In terms of mass, saprophagae are dominants in litter (77 %) – Lumbricidae, Mollusca, Geotrupidae, and soil (56 %) – Lumbricidae, Diplopoda. This trophic group also dominates in terms of dynamic density (78 %).
Conclusion. The number of the investigated mesofauna is up to 280 ind./m2 with the mass of up to 13.6 g/m2. A large proportion of the number (71 %) and the mass (77 %) of the community are concentrated in the litter, the rest are found in 30–40 cm deep soil layer. Insects dominate in the community, accounting for more than 70 % of its taxonomic diversity. Soil and litter mesofauna community of the oak-beech-pine forest has rather high species diversity, and its quantitative indicators as well as structural and functional characteristics are favorable for the long-term existence and maintenance of a sustainable ecosystem of the old-growth forest.
Keywords
Full Text:
PDFReferences
| Andrusevich, K. V., Nazarenko, M. M., Lykholat, T. Yu., & Grygoryuk, I. P. (2018). Effect of traditional agriculture technology on communities of soil invertebrates. Ukrainian Journal of Ecology, 8(1), 33-40. doi:10.15421/2018_184 Crossref ● Google Scholar | ||||
| ||||
| Bashta, A.-T. V., Hirna, A. Y., Kanarsky, Y. V., Lenevych, O. I., Pyzhyk, I. S., Tsaryk, I. Y., Shpakivska, I. M., Yavornytsky, V. I., & Yashchenko, P. T. (2023). Rezultaty pilotnykh doslidzhen ecosystem starovikovykh lisiv Roztochchia [Results of the pilot research of old-grow forest ecosystems of Roztochya]. Proceedings of the International Scientific Conference "Modern Conservation Status of Natural Diversity and Sustainable Use of the Resources of Protected Areas", Ivano-Frankove: Yavoriv NNP. 51-57. Retrieved from https://yavorivskyi-park.in.ua/wp-content/uploads/2023/07/YAvorivskyy-NPP-zbirnyk-tez-1.pdf (In Ukrainian) | ||||
| ||||
| Bonada, N., Prat, N., Resh, V. H., & Statzner, B. (2006). Developments in aquatic insect biomonitoring: a comparative analysis of recent approaches. Annual Review of Entomology, 51(1), 495-523. doi:10.1146/annurev.ento.51.110104.151124 Crossref ● PubMed ● Google Scholar | ||||
| ||||
| Burakowski, B., Mroczkowski, M., & Stefańska, J. (1973). Coleoptera: Carabidae. Catalogue of Polish fauna, 23(2), 1-233. Google Scholar | ||||
| ||||
| Burakowski, B., Mroczkowski, M., & Stefańska, J. (1974). Coleoptera: Carabidae. Catalogue of Polish fauna, 23(3), 1-430. Google Scholar | ||||
| ||||
| Donohue, I., Hillebrand, H., Montoya, J. M., Petchey, O. L., Pimm, S. L., Fowler, M. S., Healy K., Jackson, A. L., Lurgi, M., McClean, D., O'Connor, N. E., O'Gorman, E. J., & Yang, Q. (2016). Navigating the complexity of ecological stability. Ecology Letters, 19(9), 1172-1185. doi:10.1111/ele.12648 Crossref ● PubMed ● Google Scholar | ||||
| ||||
| Dunger, W., & Fiedler, H. J. (1989). Soil biology methods. Stuttgart; New York: Gustav Fischer Publishing. Google Scholar | ||||
| ||||
| González, G., Barberena-Arias, M. F., Huang, W., & Ospina-Sánchez, C. M. (2021). Sampling methods for soil and litter fauna. In: J. C. Santos & G. W. Fernandes (Eds.), Measuring arthropod biodiversity (pp. 495-522). Springer, Cham. doi:10.1007/978-3-030-53226-0_19 Crossref ● Google Schola | ||||
| ||||
| Görres, J. H., & Amador, J. A. (2021). The soil fauna. In: T. J. Gentry, J. J. Fuhrmann & D. A. Zuberer (Eds.), Principles and applications of soil microbiology (pp. 191-212). Cambridge, MA: Elsevier. doi:10.1016/b978-0-12-820202-9.00008-3 Crossref ● Google Scholar | ||||
| ||||
| Harde, K., & Severa, F. (1988). Der Kosmos-Käferführer: Die mitteleuropäischen Käfer. Wien: Kremayr & Scheriau. Google Scholar | ||||
| ||||
| Hébert, C. (2023). Forest arthropod diversity. In: J. D. Allison, T. D. Paine, B. Slippers & M. J. Wingfield (Eds.), Forest entomology and pathology (pp. 45-90). Springer, Cham. doi:10.1007/978-3-031-11553-0_3 Crossref ● Google Scholar | ||||
| ||||
| Horoshko, M. P., & Khomiuk, P. H. (2005). Znachennia typolohichnoho profiliu A. Piasetskoho dlia monitorynhu lisovykh nasadzhen pryrodnoho zapovidnyka "Roztochchia" [The importance of A. Piasetskyi typological forest site for the tree stands monitoring of "Roztochchia" Nature Reserve]. Scientific Bulletin of UNFU, 15(5), 9-13. (In Ukrainian) Google Scholar | ||||
| ||||
| Khomiuk, P. H. (2005). Osoblyvosti vidpadu derev na profili typiv lisu A. Piasetskoho za period z 1992 po 2002 roky [Tree fall peculiarities on A. Piasetskyi typological forest site during 1992-2002]. Scientific Bulletin of UNFU, 15(1), 14-20. (In Ukrainian) Google Scholar | ||||
| ||||
| Leibold, M. A., Holyoak, M., Mouquet, N., Amarasekare, P., Chase, J. M., Hoopes, M. F., Holt, R. D., Shurin, J. B., Law, R., Tilman, D., Loreau, M., & Gonzalez, A. (2004). The metacommunity concept: a framework for multi-scale community ecology. Ecology Letters, 7(7), 601-613.doi:10.1111/j.1461-0248.2004.00608.x Crossref ● Google Scholar | ||||
| ||||
| Loreau, M., & de Mazancourt, C. (2013). Biodiversity and ecosystem stability: a synthesis of underlying mechanisms. Ecology Letters, 16(s1), 106-115. doi:10.1111/ele.12073 Crossref ● PubMed ● Google Scholar | ||||
| ||||
| McCann, K. S. (2000). The diversity - stability debate. Nature, 405(6783), 228-233. doi:10.1038/35012234 Crossref ● PubMed ● Google Scholar | ||||
| ||||
| McCann, K., Hastings, A., & Huxel, G. R. (1998). Weak trophic interactions and the balance of nature. Nature, 395(6704), 794-798. doi:10.1038/27427 Crossref ● Google Scholar | ||||
| ||||
| Moretti, M., Dias, A. T. C., de Bello, F., Altermatt, F., Chown, S. L., Azcárate, F. M., Bell, J. R., Fournier, B., Hedde, M., Hortal, J., Ibanez, S., Öckinger, E., Sousa, J. P., Ellers, J., & Berg, M. P. (2017). Handbook of protocols for standardized measurement of terrestrial invertebrate functional traits. Functional Ecology, 31(3), 558-567. doi.org/10.1111/1365-2435.12776 Crossref ● Google Scholar | ||||
| ||||
| Pollierer, M. M., Klarner, B., Ott, D., Digel, C., Ehnes, R. B., Eitzinger, B., Erdmann, G., Brose, U., Maraun, M., & Scheu, S. (2021). Diversity and functional structure of soil animal communities suggest soil animal food webs to be buffered against changes in forest land use. Oecologia, 196, 195-209. doi:10.1007/s00442-021-04910-1 Crossref ● PubMed ● PMC ● Google Scholar | ||||
| ||||
| Radchenko, O. H., & Elmes, G. W. (2010). Myrmica ants (Hymenoptera: Formicidae) of the old world. Warszawa: Museum and Institute of Zoology. Google Scholar | ||||
| ||||
| Rizun, V. B. (2003). Turuny Ukraiinskykh Karpat [Carabidae of Ukrainian Carpathians]. Lviv: National Museum of Natural History. (In Ukrainian) Google Scholar | ||||
| ||||
| Ruppert, L.-S., Staab, M., Klingenfuß, S., Rappa, N. J., Frey, J., & Segelbacher, G. (2023). Leaf litter arthropods show little response to structural retention in a Central European forest. Biodiversity Conservation, 32(12), 3973-3990. doi.org/10.1007/s10531-023-02677-w Crossref ● Google Scholar | ||||
| ||||
| Singh, M., Bijlwan, A., Shukla, G., & Chakravarty, S. (2025). Forest degradation and ecosystem functioning. In: G. Shukla, K. A. Manohar, A. Raj Kizha, P. Panwar & S. Chakravarty (Eds.), Forest degradation and management (pp. 109-124). Springer, Cham. doi:10.1007/978-3-031-84055-5_6 Crossref ● Google Scholar | ||||
| ||||
| Stöcker, G., & Bergmann, A. (1977). Ein Modell der Dominanzstruktur und seine Anwedung. 1. Modellbildung, Modellrealisierung, Dominanzklassen. Archiv für Naturschutz und Landschaftsforschung, 17(1), 1-26. Google Scholar | ||||
| ||||
| Sverlova, N. V., & Hural, R. I. (2005). Vyznachnyk nazemnykh moluskiv zakhodu Ukraiiny [A key for the identification of terrestrial mollusks of Western Ukraine]. Lviv: National Museum of Natural History. (In Ukrainian) Google Scholar | ||||
| ||||
| Tsaryk, I. Y., & Yavornytskyi, V. I. (2020). Modern status of diversity of soil mesofauna communities in meadow-steppe areas of Northern Podillia. Studia Biologica, 14(2), 69-78. doi:10.30970/sbi.1402.615 Crossref ● Google Scholar | ||||
| ||||
| Tsaryk, I., Yavornytskyi, V. & Reshetylo, O. (2023). Taxonomic diversity of litter and soil invertebrates and the structure of dominance of their communities under the influence of natural afforestation of model plots in Western Polissia. Studia Biologica, 17(4), 133-142. doi:10.30970/sbi.1704.742 Crossref ● Google Scholar | ||||
| ||||
| Vasconcelos, H. L., & Laurance, W. F. (2005). Influence of habitat, litter type, and soil invertebrates on leaf-litter decomposition in a fragmented Amazonian land-scape. Oecologia, 144(3), 456-462. doi:10.1007/s00442-005-0117-1 Crossref ● PubMed ● Google Scholar | ||||
| ||||
| Warren, R. J., & Bradford, M. A. (2013). Mutualism fails when climate response differs between interacting species. Global Change Biology, 20(2), 466-474. doi:10.1111/gcb.12407 Crossref ● PubMed ● Google Scholar | ||||
| ||||
| Xu, X., Slade, E. M., Cao, P., Wang, Y., Zou, X., Wang, W., & Ruan, H. (2024). Effects of soil fauna on leaf litter decomposition and nutrient release during a two-year field experiment in a poplar plantation. Plant and Soil, 501(1-2), 211-224. doi:10.1007/s11104-023-06300-3 Crossref ● Google Scholar | ||||
Refbacks
- There are currently no refbacks.
Copyright (c) 2025 Inna Tsaryk, Vasyl Yavornytskyi, Ostap Reshetylo

This work is licensed under a Creative Commons Attribution 4.0 International License.
