DOMINANCE STRUCTURE OF THE COMMUNITIES OF SOIL AND LITTER MESOFAUNA IN OLD-GROWTH FORESTS OF THE UKRAINIAN ROZTOCHCHIA

Inna Tsaryk, Vasyl Yavornytskyi, Ostap Reshetylo


DOI: http://dx.doi.org/10.30970/sbi.1902.829

Abstract


Background. The structure of soil and litter invertebrate mesofauna communities in old-growth forest ecosystems is important for understanding the mechanisms of their stability. Our research is focused on establishing the taxonomic and functional diversity of mesofauna communities in old-growth forests of the Ukrainian Roztochchia. The aim of the study was to determine the taxonomic diversity of soil-litter invertebrates with the subsequent identification of the dominance structure of their communities on a natural old-growth forest site.
Materials and Methods. Mesofauna survey was carried out on a model plot of the natural old-growth oak-beech-pine forest within the Piasetskyi typological forest site on the area of Roztochchia Nature Reserve. The sampling of soil and litter mesofauna was accomplished in 2023 by means of soil layer excavation to the depth of its distribution, manual analysis of soil and litter samples, and Barber pitfall traps. Material analysis was carried out by standard in soil zoology methods.
Results and Discussion. The taxonomic diversity of the community of soil-litter mesofauna of the studied old-growth oak-beech-pine forest includes more than 60 species of invertebrates which belong to 25 families from seven classes of three phyla. In terms of number, the trophic group of predators is dominant in forest litter (49 %), in particular Chilopoda and Staphylinidae; phytophages dominate in the soil (55 %), being represented mostly by Elateridae and Curculionidae larvae. In terms of mass, saprophagae are dominants in litter (77 %) – Lumbricidae, Mollusca, Geotrupidae, and soil (56 %) – Lumbricidae, Diplopoda. This trophic group also dominates in terms of dynamic density (78 %).
Conclusion. The number of the investigated mesofauna is up to 280 ind./m2 with the mass of up to 13.6 g/m2. A large proportion of the number (71 %) and the mass (77 %) of the community are concentrated in the litter, the rest are found in 30–40 cm deep soil layer. Insects dominate in the community, accounting for more than 70 % of its taxonomic diversity. Soil and litter mesofauna community of the oak-beech-pine forest has rather high species diversity, and its quantitative indicators as well as structural and functional characteristics are favorable for the long-term existence and maintenance of a sustainable ecosystem of the old-growth forest.


Keywords


invertebrates, old-growth forest, taxonomic diversity, trophic groups, saprophaga, Roztochchia

Full Text:

PDF

References


Andrusevich, K. V., Nazarenko, M. M., Lykholat, T. Yu., & Grygoryuk, I. P. (2018). Effect of traditional agriculture technology on communities of soil invertebrates. Ukrainian Journal of Ecology, 8(1), 33-40. doi:10.15421/2018_184
CrossrefGoogle Scholar

Bashta, A.-T. V., Hirna, A. Y., Kanarsky, Y. V., Lenevych, O. I., Pyzhyk, I. S., Tsaryk, I. Y., Shpakivska, I. M., Yavornytsky, V. I., & Yashchenko, P. T. (2023). Rezultaty pilotnykh doslidzhen ecosystem starovikovykh lisiv Roztochchia [Results of the pilot research of old-grow forest ecosystems of Roztochya]. Proceedings of the International Scientific Conference "Modern Conservation Status of Natural Diversity and Sustainable Use of the Resources of Protected Areas", Ivano-Frankove: Yavoriv NNP. 51-57. Retrieved from https://yavorivskyi-park.in.ua/wp-content/uploads/2023/07/YAvorivskyy-NPP-zbirnyk-tez-1.pdf (In Ukrainian)

Bonada, N., Prat, N., Resh, V. H., & Statzner, B. (2006). Developments in aquatic insect biomonitoring: a comparative analysis of recent approaches. Annual Review of Entomology, 51(1), 495-523. doi:10.1146/annurev.ento.51.110104.151124
CrossrefPubMedGoogle Scholar

Burakowski, B., Mroczkowski, M., & Stefańska, J. (1973). Coleoptera: Carabidae. Catalogue of Polish fauna, 23(2), 1-233.
Google Scholar

Burakowski, B., Mroczkowski, M., & Stefańska, J. (1974). Coleoptera: Carabidae. Catalogue of Polish fauna, 23(3), 1-430.
Google Scholar

Donohue, I., Hillebrand, H., Montoya, J. M., Petchey, O. L., Pimm, S. L., Fowler, M. S., Healy K., Jackson, A. L., Lurgi, M., McClean, D., O'Connor, N. E., O'Gorman, E. J., & Yang, Q. (2016). Navigating the complexity of ecological stability. Ecology Letters, 19(9), 1172-1185. doi:10.1111/ele.12648
CrossrefPubMedGoogle Scholar

Dunger, W., & Fiedler, H. J. (1989). Soil biology methods. Stuttgart; New York: Gustav Fischer Publishing.
Google Scholar

González, G., Barberena-Arias, M. F., Huang, W., & Ospina-Sánchez, C. M. (2021). Sampling methods for soil and litter fauna. In: J. C. Santos & G. W. Fernandes (Eds.), Measuring arthropod biodiversity (pp. 495-522). Springer, Cham. doi:10.1007/978-3-030-53226-0_19
CrossrefGoogle Schola

Görres, J. H., & Amador, J. A. (2021). The soil fauna. In: T. J. Gentry, J. J. Fuhrmann & D. A. Zuberer (Eds.), Principles and applications of soil microbiology (pp. 191-212). Cambridge, MA: Elsevier. doi:10.1016/b978-0-12-820202-9.00008-3
CrossrefGoogle Scholar

Harde, K., & Severa, F. (1988). Der Kosmos-Käferführer: Die mitteleuropäischen Käfer. Wien: Kremayr & Scheriau.
Google Scholar

Hébert, C. (2023). Forest arthropod diversity. In: J. D. Allison, T. D. Paine, B. Slippers & M. J. Wingfield (Eds.), Forest entomology and pathology (pp. 45-90). Springer, Cham. doi:10.1007/978-3-031-11553-0_3
CrossrefGoogle Scholar

Horoshko, M. P., & Khomiuk, P. H. (2005). Znachennia typolohichnoho profiliu A. Piasetskoho dlia monitorynhu lisovykh nasadzhen pryrodnoho zapovidnyka "Roztochchia" [The importance of A. Piasetskyi typological forest site for the tree stands monitoring of "Roztochchia" Nature Reserve]. Scientific Bulletin of UNFU, 15(5), 9-13. (In Ukrainian)
Google Scholar

Khomiuk, P. H. (2005). Osoblyvosti vidpadu derev na profili typiv lisu A. Piasetskoho za period z 1992 po 2002 roky [Tree fall peculiarities on A. Piasetskyi typological forest site during 1992-2002]. Scientific Bulletin of UNFU, 15(1), 14-20. (In Ukrainian)
Google Scholar

Leibold, M. A., Holyoak, M., Mouquet, N., Amarasekare, P., Chase, J. M., Hoopes, M. F., Holt, R. D., Shurin, J. B., Law, R., Tilman, D., Loreau, M., & Gonzalez, A. (2004). The metacommunity concept: a framework for multi-scale community ecology. Ecology Letters, 7(7), 601-613.doi:10.1111/j.1461-0248.2004.00608.x
CrossrefGoogle Scholar

Loreau, M., & de Mazancourt, C. (2013). Biodiversity and ecosystem stability: a synthesis of underlying mechanisms. Ecology Letters, 16(s1), 106-115. doi:10.1111/ele.12073
CrossrefPubMedGoogle Scholar

McCann, K. S. (2000). The diversity - stability debate. Nature, 405(6783), 228-233. doi:10.1038/35012234
CrossrefPubMedGoogle Scholar

McCann, K., Hastings, A., & Huxel, G. R. (1998). Weak trophic interactions and the balance of nature. Nature, 395(6704), 794-798. doi:10.1038/27427
CrossrefGoogle Scholar

Moretti, M., Dias, A. T. C., de Bello, F., Altermatt, F., Chown, S. L., Azcárate, F. M., Bell, J. R., Fournier, B., Hedde, M., Hortal, J., Ibanez, S., Öckinger, E., Sousa, J. P., Ellers, J., & Berg, M. P. (2017). Handbook of protocols for standardized measurement of terrestrial invertebrate functional traits. Functional Ecology, 31(3), 558-567. doi.org/10.1111/1365-2435.12776
CrossrefGoogle Scholar

Pollierer, M. M., Klarner, B., Ott, D., Digel, C., Ehnes, R. B., Eitzinger, B., Erdmann, G., Brose, U., Maraun, M., & Scheu, S. (2021). Diversity and functional structure of soil animal communities suggest soil animal food webs to be buffered against changes in forest land use. Oecologia, 196, 195-209. doi:10.1007/s00442-021-04910-1
CrossrefPubMedPMCGoogle Scholar

Radchenko, O. H., & Elmes, G. W. (2010). Myrmica ants (Hymenoptera: Formicidae) of the old world. Warszawa: Museum and Institute of Zoology.
Google Scholar

Rizun, V. B. (2003). Turuny Ukraiinskykh Karpat [Carabidae of Ukrainian Carpathians]. Lviv: National Museum of Natural History. (In Ukrainian)
Google Scholar

Ruppert, L.-S., Staab, M., Klingenfuß, S., Rappa, N. J., Frey, J., & Segelbacher, G. (2023). Leaf litter arthropods show little response to structural retention in a Central European forest. Biodiversity Conservation, 32(12), 3973-3990. doi.org/10.1007/s10531-023-02677-w
CrossrefGoogle Scholar

Singh, M., Bijlwan, A., Shukla, G., & Chakravarty, S. (2025). Forest degradation and ecosystem functioning. In: G. Shukla, K. A. Manohar, A. Raj Kizha, P. Panwar & S. Chakravarty (Eds.), Forest degradation and management (pp. 109-124). Springer, Cham. doi:10.1007/978-3-031-84055-5_6
CrossrefGoogle Scholar

Stöcker, G., & Bergmann, A. (1977). Ein Modell der Dominanzstruktur und seine Anwedung. 1. Modellbildung, Modellrealisierung, Dominanzklassen. Archiv für Naturschutz und Landschaftsforschung, 17(1), 1-26.
Google Scholar

Sverlova, N. V., & Hural, R. I. (2005). Vyznachnyk nazemnykh moluskiv zakhodu Ukraiiny [A key for the identification of terrestrial mollusks of Western Ukraine]. Lviv: National Museum of Natural History. (In Ukrainian)
Google Scholar

Tsaryk, I. Y., & Yavornytskyi, V. I. (2020). Modern status of diversity of soil mesofauna communities in meadow-steppe areas of Northern Podillia. Studia Biologica, 14(2), 69-78. doi:10.30970/sbi.1402.615
CrossrefGoogle Scholar

Tsaryk, I., Yavornytskyi, V. & Reshetylo, O. (2023). Taxonomic diversity of litter and soil invertebrates and the structure of dominance of their communities under the influence of natural afforestation of model plots in Western Polissia. Studia Biologica, 17(4), 133-142. doi:10.30970/sbi.1704.742
CrossrefGoogle Scholar

Vasconcelos, H. L., & Laurance, W. F. (2005). Influence of habitat, litter type, and soil invertebrates on leaf-litter decomposition in a fragmented Amazonian land-scape. Oecologia, 144(3), 456-462. doi:10.1007/s00442-005-0117-1
CrossrefPubMedGoogle Scholar

Warren, R. J., & Bradford, M. A. (2013). Mutualism fails when climate response differs between interacting species. Global Change Biology, 20(2), 466-474. doi:10.1111/gcb.12407
CrossrefPubMedGoogle Scholar

Xu, X., Slade, E. M., Cao, P., Wang, Y., Zou, X., Wang, W., & Ruan, H. (2024). Effects of soil fauna on leaf litter decomposition and nutrient release during a two-year field experiment in a poplar plantation. Plant and Soil, 501(1-2), 211-224. doi:10.1007/s11104-023-06300-3
CrossrefGoogle Scholar


Refbacks

  • There are currently no refbacks.


Copyright (c) 2025 Inna Tsaryk, Vasyl Yavornytskyi, Ostap Reshetylo

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.