HYPOGLYCEMIC AND ANTILIPIDEMIC POTENTIAL OF NON-ALKALOID FRACTION FROM GALEGA OFFICINALIS EXTRACT IN EXPERIMENTAL DIABETES MELLITUS

Halyna Hachkova, Tetiana Pokynbroda, Nataliia Sybirna


DOI: http://dx.doi.org/10.30970/sbi.1902.827

Abstract


Introduction. Dyslipidemia is a significant risk factor for cardiovascular disease in patients with diabetes mellitus, especially of type 2. The search for biologically active compounds derived from natural products capable of correcting lipid metabolism is a promising direction in the development of effective and safe dyslipidemia therapy. This study compared the hypoglycemic and antilipidemic potential of the non-alkaloid extract of Galega officinalis and the official herbal medicinal product Arfazetyn under experimental diabetes mellitus.
Materials and Methods. Experimental diabetes mellitus was induced by intraperitoneal administration of streptozotocin. The study utilized a non-alkaloid fraction of Galega officinalis extract stabilized with biosurfactants – products of Pseudomonas sp. PS-17 biosynthesis – and the official herbal preparation Arfazetyn. To assess the hypoglycemic effect of the G. officinalis extract and Arfazetyn, glycated haemoglobin and blood glucose levels were measured, an oral glucose tolerance test was performed, and the area under the glycemic curves was calculated. To evaluate the corrective effect of the investigated herbal preparations on lipid metabolism, lipid profile analysis was conducted (total cholesterol, low-density lipoprotein cholesterol, high-density lipoprotein cholesterol, and triglycerides).
Results. The results indicate that the non-alkaloid fraction of Galega officinalis extract effectively lowers blood glucose and glycated hemoglobin levels to within the physiological range, while also improving glucose tolerance under experimental diabetes mellitus conditions. Moreover, this extract demonstrated a higher hypoglycemic potential than the official herbal medicinal product Arfazetyn. Additionally, administration of the G. officinalis extract contributed to normalizing total cholesterol, low-density lipoprotein cholesterol, decreasing triglycerides, and increasing high-density lipoprotein cholesterol content.
Conclusion. The established hypoglycemic potential of the non-alkaloid fraction of Galega officinalis extract, its ability to correct manifestations of dyslipidemia under experimental DM, confirms its therapeutic potential in managing lipid disorders and reducing associated cardiovascular risks.


Keywords


diabetes mellitus, non-alkaloid fraction extract of Galega officinalis, hypoglycemic and antilipidemic effects

Full Text:

PDF

References


Angouti, F., Nourafcan, H., Saeedi Sar, S., Assadi, A., & Ebrahimi, R. (2024). Optimizing antidiabetic properties of Galega officinalis extract: investigating the effects of foliar application of chitosan and salicylic acid. Food Science & Nutrition, 12(8), 5844-5857. doi:10.1002/fsn3.4204
CrossrefPubMedPMCGoogle Scholar

Bednarska, K., Kuś, P., & Fecka, I. (2020). Investigation of the phytochemical composition, antioxidant activity, and methylglyoxal trapping effect of Galega officinalis L. Herb in vitro. Molecules, 25(24), 5810. doi:10.3390/molecules25245810
CrossrefPubMedPMCGoogle Scholar

Bethelli, S., & Oroszi, T. (2023). Role of LDL and triglycerides in hyperlipidemia in diabetes mellitus. Journal of Family Medicine and Disease Prevention, 10(1). doi:10.23937/2469-5793/1510155
Crossref

Bumrungpert, A., Lilitchan, S., Tuntipopipat, S., Tirawanchai, N., & Komindr, S. (2018). Ferulic acid supplementation improves lipid profiles, oxidative stress, and inflammatory status in hyperlipidemic subjects: a randomized, double-blind, placebo-controlled clinical trial. Nutrients, 10(6), 713. doi:10.3390/nu10060713
CrossrefPubMedPMCGoogle Scholar

Cui, Y., Hou, P., Li, F., Liu, Q., Qin, S., Zhou, G., Xu, X., Si, Y., & Guo, S. (2017). Quercetin improves macrophage reverse cholesterol transport in apolipoprotein E-deficient mice fed a high-fat diet. Lipids in Health and Disease, 16(1), 9. doi:10.1186/s12944-016-0393-2
CrossrefPubMedPMCGoogle Scholar

Dub, A. I., & Klishch, I. M. (2019). Influence of the new herbal remedy containing dry extracts of white mulberry leaves, common bean shells and blueberry shoots on blood lipids if experimental type 2 diabetes mellitus. Ukraïns'kij bìofarmacevtičnij žurnal, 0(2(59)), 38-43. doi:10.24959/ubphj.19.211 (In Ukrainian)
CrossrefGoogle Scholar

Ebbeling, C. B., Knapp, A., Johnson, A., Wong, J. M., Greco, K. F., Ma, C., Mora, S., & Ludwig, D. S. (2022). Effects of a low-carbohydrate diet on insulin-resistant dyslipoproteinemia - a randomized controlled feeding trial. The American Journal of Clinical Nutrition, 115(1), 154-162. doi:10.1093/ajcn/nqab287
CrossrefPubMedPMCGoogle Scholar

Enayati, A., Ghojoghnejad, M., Roufogalis, B. D., Maollem, S. A., & Sahebkar, A. (2022). Impact of phytochemicals on PPAR receptors: implications for disease treatments. PPAR Research, 2022, 1-43. doi:10.1155/2022/4714914
CrossrefPubMedPMCGoogle Scholar

Faisal, M., Ahmad, N., Anis, M., Alatar, A. A., & Qahtan, A. A. (2018). Auxin-cytokinin synergism in vitro for producing genetically stable plants of Ruta graveolens using shoot tip meristems. Saudi Journal of Biological Sciences, 25(2), 273-277. doi:10.1016/j.sjbs.2017.09.009
CrossrefPubMedPMCGoogle Scholar

Goyal, P., & Hammes-Schiffer, S. (2015). Role of solvent dynamics in photoinduced proton-coupled electron transfer in a phenol-amine complex in solution. The Journal of Physical Chemistry Letters, 6(18), 3515-3520. doi.org/10.1021/acs.jpclett.5b01475
CrossrefPubMedGoogle Scholar

Hachkova, H., Nagalievska, M., Soliljak, Z., Kanyuka, O., Kucharska, A. Z., Sokół-Łętowska, A., Belonovskaya, E., Buko, V., & Sybirna, N. (2021). Medicinal plants Galega officinalis L. and yacon leaves as potential sources of antidiabetic drugs. Antioxidants, 10(9), 1362. doi:10.3390/antiox10091362
CrossrefPubMedPMCGoogle Scholar

Hu, Y., Chen, X., Hu, M., Zhang, D., Yuan, S., Li, P., & Feng, L. (2022). Medicinal and edible plants in the treatment of dyslipidemia: advances and prospects. Chinese Medicine, 17(1), 113. doi:10.1186/s13020-022-00666-9
CrossrefPubMedPMCGoogle Scholar

Jacob, S., Nair, A. B., & Morsy, M. A. (2022). Dose conversion between animals and humans: a practical solution. Indian Journal of Pharmaceutical Education and Research, 56(3), 600-607. doi:10.5530/ijper.56.3.108
CrossrefGoogle Scholar

Khamis, A. A., Salama, A. F., Kenawy, M. E., & Mohamed, T. M. (2017). Regulation of hepatic hydroxy methyl glutarate - CoA reductase for controlling hypercholesterolemia in rats. Biomedicine & Pharmacotherapy, 95, 1242-1250. doi:10.1016/j.biopha.2017.09.071
CrossrefPubMedGoogle Scholar

Lee, G. Y., Park, C. Y., Cha, K. S., Lee, S. E., Pae, M., & Han, S. N. (2018). Differential effect of dietary vitamin D supplementation on natural killer cell activity in lean and obese mice. The Journal of Nutritional Biochemistry, 55, 178-184. doi:10.1016/j.jnutbio.2018.01.004
CrossrefPubMedGoogle Scholar

Miller, R. G., Costacou, T., & Orchard, T. J. (2019). Risk factor modeling for cardiovascular disease in type 1 diabetes in the Pittsburgh epidemiology of diabetes complications (EDC) study: a comparison with the diabetes control and complications trial/epidemiology of diabetes interventions and complications study (DCCT/EDIC). Diabetes, 68(2), 409-419. doi:10.2337/db18-0515
CrossrefPubMedPMCGoogle Scholar

Ojha, S., Islam, B., Charu, C., Adem, A., & Aburawi, E. (2015). Insight into the mechanism of polyphenols on the activity of HMGR by molecular docking. Drug Design, Development and Therapy, 9, 4943-4951. doi:10.2147/dddt.s86705
CrossrefPubMedPMCGoogle Scholar

Olatoye, T. I. (2025). Discovery of novel inhibitors of HMG-CoA reductase using bioactive compounds isolated from cochlospermum species through computational methods. bioRxiv, 2025-01. doi:10.1101/2025.01.19.633828
CrossrefGoogle Scholar

Order of the Ministry of Health of Ukraine No. 1300 of July 24, 2024 "On Approval of the Unified Clinical Protocol for Primary and Specialized Medical Care 'Type 2 Diabetes Mellitus in Adults'." Retrieved from https://ips.ligazakon.net/document/MOZ35671

Parhofer, K. G. (2015). Interaction between glucose and lipid metabolism: more than diabetic dyslipidemia. Diabetes & Metabolism Journal, 39(5), 353. doi:10.4093/dmj.2015.39.5.353
CrossrefPubMedPMCGoogle Scholar

Riyad, P., Purohit, A., Sen, K., Panwar, A., & Ram, H. (2023). HMG - CoA reductase inhibition mediated hypocholesterolemic potential of myricetin and quercetin: in-silico and in-vivo studies. CyTA - Journal of Food, 21(1), 115-125. doi:10.1080/19476337.2022.2162976
CrossrefGoogle Scholar

Saikia, L., Talukdar, N. C., & Dutta, P. P. (2025). Exploring the therapeutic role of flavonoids through AMPK activation in metabolic syndrome: a narrative review. Phytotherapy Research, 39(3), 1403-1421. doi:10.1002/ptr.8428
CrossrefPubMedGoogle Scholar

Schmidt, A. M. (2019). Diabetes mellitus and cardiovascular disease: emerging therapeutic approaches. Arteriosclerosis, Thrombosis, and Vascular Biology, 39(4), 558-568. doi:10.1161/atvbaha.119.310961
CrossrefPubMedPMCGoogle Scholar

Sherwani, S. I., Khan, H. A., Ekhzaimy, A., Masood, A., & Sakharkar, M. K. (2016). Significance of HbA1c test in diagnosis and prognosis of diabetic patients. Biomarker Insights, 11, BMI.S38440. doi:10.4137/bmi.s38440
CrossrefPubMedPMCGoogle Scholar

Sukhtezari, S., Sahari, M. A., Barzegar, M., & Azizi, M. H. (2024). In vitro antidiabetic and antioxidant activities of Galega officinalis extracts. Food Science & Nutrition, 12(10), 8137-8149. doi:10.1002/fsn3.4326
CrossrefPubMedPMCGoogle Scholar

Tran, N., Pham, B., & Le, L. (2020). Bioactive compounds in anti-diabetic plants: from herbal medicine to modern drug discovery. Biology, 9(9), 252. doi:10.3390/biology9090252
CrossrefPubMedPMCGoogle Scholar

van Kampen, E. J., & Zijlstra, W. G. (1983). Spectrophotometry of hemoglobin and hemoglobin derivatives. Advances in Clinical Chemistry, 23, 199-257. doi:10.1016/s0065-2423(08)60401-1
CrossrefPubMedGoogle Scholar

Wong, T. Y., Lin, S., & Leung, L. K. (2015). The flavone luteolin suppresses SREBP-2 expression and post-translational activation in hepatic cells. PLoS One, 10(8), e0135637. doi:10.1371/journal.pone.0135637
CrossrefPubMedPMCGoogle Scholar

Yen, G.-C., & Chen, H.-Y. (1995). Antioxidant activity of various tea extracts in relation to their antimutagenicity. Journal of Agricultural and Food Chemistry, 43(1), 27-32. doi:10.1021/jf00049a007
CrossrefGoogle Scholar

Yeh, S. T. (2002). Using trapezoidal rule for the area under a curve calculation. Proceedings of the Twenty-Seventh Annual SAS, 27, 229-237.
Google Scholar


Refbacks

  • There are currently no refbacks.


Copyright (c) 2025 Halyna Hachkova, Tetiana Pokynbroda, Nataliia Sybirna

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.