EFFECT OF SALINITY ON THE SOYBEAN PLANTS SYMBIOTIC AND PHOTOSYNTHETIC APPARATUSES ACTIVITY UNDER RHIZOBIA INOCULATION WITH THE ADDITION OF Ge AND Mo NANOCARBOXYLATES

Dmytro Kiriziy, Ivan Obeziuk, Lyudmyla Mykhalkiv, Sergii Kots


DOI: http://dx.doi.org/10.30970/sbi.1902.823

Abstract


Background. Soybean is one of the main oil and protein crops in the world, which occupies the largest cultivated area among legumes. However, adverse growing conditions, particularly salinity, can cause significant yield losses. It is known that salt stress affects morphological indices and physiological processes in soybean plants. Given the fact that the main factors contributing to the soybean-rhizobial symbiosis productivity are nitrogen fixation and CO2 assimilation, it is important to find ways to optimize these processes, in particular under salinity conditions.
Materials and Methods. The research was conducted on symbiotic systems created with the participation of soybean plants (Glycine max (L.) Merr.) of the Samorodok variety and nodule bacteria Bradyrhizobium japonicum RS08 strain, cultivated with the addition of Ge and Mo nanocarboxylates.
Results. It was revealed that salinity inhibited the activity of the symbiotic and photosynthetic apparatuses in soybean. With that, the degree of the symbiotic apparatus activity suppression under salinity conditions decreased over time. The addition of Ge nanocarboxylate to the inoculation suspension had a positive effect on the net CO2 assimilation rate in plant leaves under salinity at the bean-filling stage, and Mo – at all studied development stages. The transpiration rate closely correlated with the net assimilation rate, although the degree of its suppression by salinity was much less than that of photosynthesis. Positive correlations were found between nitrogen-fixing activity and the calculated net CO2 assimilation rate by the whole plant. A close positive correlation was found between the net assimilation rate at the bean filling stage and the grain productivity of soybean plants. At the same time, under inoculation with a suspension of rhizobia with the addition of Mo nanocarboxylate, the weight of the grain from the plant was the largest both among the control plants (without salinity) and among the salinity treatments.
Conclusions. The obtained results indicate that, according to all investigated physiological parameters, inoculation of soybean seeds with Bradyrhizobium japonicum RS08 strain with the addition of Mo nanocarboxylate was the most effective in maintaining the activity of the symbiotic and photosynthetic apparatuses and, ultimately, grain productivity of plants both under normal conditions and under salinity.


Keywords


Glycine max (L.) Merr., Bradyrhizobium japonicum, salinity, nitrogen-fixing activity, photosynthesis, metal nanocarboxylates, productivity

Full Text:

PDF

References


Busch, F. A., Ainsworth, E. A., Amtmann, A., Cavanagh, A. P., Driever, S. M., Ferguson, J. N., Kromdijk, J., Lawson, T., Leakey, A. D. B., Matthews, J. S. A., Meacham-Hensold, K., Vath, R. L., Vialet-Chabrand, S., Walker, B. J., & Papanatsiou, M. (2024). A guide to photosynthetic gas exchange measurements: fundamental principles, best practice and potential pitfalls. Plant, Cell & Environment, 47(9), 3344-3364. doi:10.1111/pce.14815
CrossrefPubMedGoogle Scholar

Cakmak, I., Brown, P., Colmenero-Flores, J. M., Husted, S., Kutman, B. Y., Nikolic, M., Rengel, Z., Schmidt, S. B., & Zhao, F.-J. (2023). Micronutrients. In: Z. Rengel, I. Cakmak, & P. J. White (Eds.), Marschner's mineral nutrition of plants (pp. 283-385). Cambridge, Academic press. doi:10.1016/b978-0-12-819773-8.00017-4
CrossrefGoogle Scholar

Chen, L., Peng, L., Ouyang, W., Yao, H., Ye, Y., Shan, Z., Cao, D., Chen, S., Yang, Z., Huang, Y., Han, B., Sha, A., Zhou, X., & Chen, H. (2024). Screening and identification of salt tolerance soybean varieties and germplasms. Oil Crop Science, 9(3), 204-210. doi:10.1016/j.ocsci.2024.06.005
CrossrefGoogle Scholar

Dawood, M. F. A., Zaid, A., & Latef, A. A. H. A. (2022). Salicylic acid spraying-induced resilience strategies against the damaging impacts of drought and/or salinity stress in two varieties of Vicia faba L. seedlings. Journal of Plant Growth Regulation, 41(3), 1919-1942. doi:10.1007/s00344-021-10381-8
CrossrefGoogle Scholar

Do, T. D., Vuong, T. D., Dunn, D., Smothers, S., Patil, G., Yungbluth, D. C., Chen, P., Scaboo, A., Xu, D., Carter, T. E., Nguyen, H. T., & Grover Shannon, J. (2018). Mapping and confirmation of loci for salt tolerance in a novel soybean germplasm, Fiskeby III. Theoretical and Applied Genetics, 131(3), 513-524. doi:10.1007/s00122-017-3015-0
CrossrefPubMedGoogle Scholar

Faralli, M., & Lawson, T. (2019). Natural genetic variation in photosynthesis: an untapped resource to increase crop yield potential? The Plant Journal, 101(3), 518-528. doi:10.1111/tpj.14568
CrossrefPubMedPMCGoogle Scholar

Ferdous, J., Mannan, M. A., Haque, M. M., Mamun, M. A. A., & Alam, M. S. (2018). Chlorophyll content, water relation traits and mineral ions accumulation in soybean as influenced by organic amendments under salinity stress. Australian Journal of Crop Science, 12(12), 1806-1812. doi:10.21475/ajcs.18.12.12.p942
CrossrefGoogle Scholar

Hardy, R. W. F., Holsten, R. D., Jackson, E. K., & Burns, R. C. (1968). The acetylene-ethylene assay for N2 fixation: laboratory and field evaluation. Plant Physiology, 42(8), 1185-1207. doi:10.1104/pp.43.8.1185
CrossrefPubMedPMCGoogle Scholar

Ilangumaran, G., Schwinghamer, T. D., & Smith, D. L. (2021). Rhizobacteria from root nodules of an indigenous legume enhance salinity stress tolerance in soybean. Frontiers in Sustainable Food Systems, 4, 617978. doi:10.3389/fsufs.2020.617978
CrossrefGoogle Scholar

Jamali, Z. H., Ali, S., Qasim, M., Song, C., Anwar, M., Du, J., & Wang, Y. (2023). Assessment of molybdenum application on soybean physiological characteristics in maize-soybean intercropping. Frontiers in Plant Science, 14, 1240146. doi:10.3389/fpls.2023.1240146
CrossrefPubMedPMCGoogle Scholar

Kataria, S., Baghel, L., Jain, M., & Guruprasad, K. N. (2019). Magnetopriming regulates antioxidant defense system in soybean against salt stress. Biocatalysis and Agricultural Biotechnology, 18, 101090. doi:10.1016/j.bcab.2019.101090
CrossrefGoogle Scholar

Kiriziy, D., Kots, S., Rybachenko, L., & Pukhtaievych, P. (2022). Inoculation of soybean seeds by rhizobia with nanometal carboxylates reduces the negative effect of drought on N2 and CO2 assimilation. Plant, Soil and Environment, 68(11), 510-515. doi:10.17221/287/2022-pse
CrossrefGoogle Scholar

Kolbert, Z., Szőllősi, R., Rónavári, A., & Molnár, A. (2022). Nanoforms of essential metals: from hormetic phytoeffects to agricultural potential. Journal of Experimental Botany, 73(6), 1825-1840. doi:10.1093/jxb/erab547
CrossrefPubMedPMCGoogle Scholar

Kots, S. Y., Rybachenko, L. I., Khrapova, A. V., Kukol, K. P., Rybachenko, O. R., & Кhomenko, Y. O. (2022). Composition of pigment complex in leaves of soybean plants, inoculated by Bradyrhizobium japonicum, subject to metal nanocarboxylates and various levels of water supply. Biosystems Diversity, 30(1), 80-87. doi:10.15421/0122 08
CrossrefGoogle Scholar

Langemeier, M. (2024). International benchmarks for soybean production. Center for Commercial Agriculture, Purdue University. Retrieved from https://ag.purdue.edu/commercialag/home/resource/2024/03/international-benchmarks-for-soybean-production-2024
Google Scholar

Liu, Y., Hou, L., Li, Q., Jiang, Z., Liu, D., & Zhu, Y. (2016). The effects of exogenous antioxidant germanium (Ge) on germination and growth of Lycium ruthenicum Murr. seedlings subjected to NaCl stress. Environmental Technology, 37(8), 909-919. doi:10.1080/09593330.2015.1091512
CrossrefPubMedGoogle Scholar

Luo, X., Keenan, T. F., Chen, J. M., Croft, H., Colin Prentice, I., Smith, N. G., Walker, A. P., Wang, H., Wang, R., Xu, C., & Zhang, Y. (2021). Global variation in the fraction of leaf nitrogen allocated to photosynthesis. Nature Communications, 12(1), 4866. doi:10.1038/s41467-021-25163-9
CrossrefPubMedPMCGoogle Scholar

Morgun, V. V., Rybachenko, L. I., Kots, S. Yа., Kirishiy, D. A., Kukol, K. P., & Rybachenko, O. R. (2019). Features of the functioning of symbiotic systems and photosynthetic apparatus of soybean inoculated by Bradyrhizobium japonicum under the influence of metal carboxylates. Microbiological Journal, 81(1), 94-105. doi:10.15407/microbiolj81.01.094 (In Ukrainian)
CrossrefGoogle Scholar

Mykhalkiv, L., Kots, S., & Obeziuk, I. (2023). Influence of salinity of legume plants and their use for restoration of soil fertility. Studia Biologica, 17(3), 211-224. doi:10.30970/sbi.1703.733 (In Ukrainian)
CrossrefGoogle Scholar

Nadeem, M., Li, J., Yahya, M., Wang, M., Ali, A., Cheng, A., Wang, X., & Ma, C. (2019). Grain legumes and fear of salt stress: focus on mechanisms and management strategies. International Journal of Molecular Sciences, 20(4), 799. doi:10.3390/ijms20040799
CrossrefPubMedPMCGoogle Scholar

Oliveira, S. L., Crusciol, C. A. C., Rodrigues, V. A., Galeriani, T. M., Portugal, J. R., Bossolani, J. W., Moretti, L. G., Calonego, J. C., & Cantarella, H. (2022). Molybdenum foliar fertilization improves photosynthetic metabolism and grain yields of field-grown soybean and maize. Frontiers in Plant Science, 13, 887682. doi:10.3389/fpls.2022.887682
CrossrefPubMedPMCGoogle Scholar

Otie, V., Udo, I., Shao, Y., Itam, M. O., Okamoto, H., An, P., & Eneji, E. A. (2021). Salinity effects on morpho-physiological and yield traits of soybean (Glycine max L.) as mediated by foliar spray with brassinolide. Plants, 10, 541. doi:10.3390/ plants10030541
CrossrefPubMedPMCGoogle Scholar

Rasheed, A., Raza, A., Jie, H., Mahmood, A., Ma, Y., Zhao, L., Xing, H., Li, L., Hassan, M. U., Qari, S. H., & Jie, Y. (2022). Molecular tools and their applications in developing salt-tolerant soybean (Glycine max L.) cultivars. Bioengineering, 9(10), 495. doi:10.3390/bioengineering9100495
CrossrefPubMedPMCGoogle Scholar

Shu, K., Qi, Y., Chen, F., Meng, Y., Luo, X., Shuai, H., Zhou, W., Ding, J., Du, J., Liu, J., Yang, F., Wang, Q., Liu, W., Yong, T., Wang, X., Feng, Y., & Yang, W. (2017). Salt stress represses soybean seed germination by negatively regulating GA biosynthesis while positively mediating ABA biosynthesis. Frontiers in Plant Science, 8, 1372. doi:10.3389/fpls.2017.01372
CrossrefPubMedPMCGoogle Scholar

Ullah, A., Li, M., Noor, J., Tariq, A., Liu, Y., & Shi, L. (2019). Effects of salinity on photosynthetic traits, ion homeostasis and nitrogen metabolism in wild and cultivated soybean. PeerJ, 7, e8191. doi:10.7717/peerj.8191
CrossrefPubMedPMCGoogle Scholar

van Zelm, E., Zhang, Y., & Testerink, C. (2020). Salt tolerance mechanisms of plants. Annual Review of Plant Biology, 71(1), 403-433. doi:10.1146/annurev-arplant-050718-100005
CrossrefPubMedGoogle Scholar

Xu, C., Shan, J., Liu, T., Wang, Q., Ji, Y., Zhang, Y., Wang, M., Xia, N., & Zhao, L. (2023). CONSTANS-LIKE 1a positively regulates salt and drought tolerance in soybean. Plant Physiology, 191(4), 2427-2446. doi:10.1093/plphys/kiac573
CrossrefPubMedPMCGoogle Scholar

Yang, Y., & Guo, Y. (2018). Elucidating the molecular mechanisms mediating plant salt-stress responses. New Phytologist, 217(2), 523-539. doi:10.1111/nph.14920
CrossrefPubMedGoogle Scholar

Zhou, X., Tian, Y., Qu, Z., Wang, J., Han, D., & Dong, S. (2023). Comparing the salt tolerance of different spring soybean varieties at the germination stage. Plants, 12(15), 2789. doi:10.3390/plants12152789
CrossrefPubMedPMCGoogle Scholar


Refbacks

  • There are currently no refbacks.


Copyright (c) 2025 Dmytro Kiriziy, Ivan Obeziuk, Lyudmyla Mykhalkiv, Sergii Kots

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.