ACTIVITY OF THE PHOTOSYNTHETIC APPARATUS AND PRODUCTIVITY OF TRANSGENIC WINTER WHEAT PLANTS WITH PARTIAL SUPPRESSION OF THE PROLINE DEHYDROGENASE GENE
DOI: http://dx.doi.org/10.30970/sbi.1902.821
Abstract
Background. Partial suppression of the proline dehydrogenase (ProDH) gene in transgenic winter wheat plants leads to an increase in the level of free proline accumulation. However, the effect of increasing the content of this amino acid on the physiological and biochemical characteristics of this crop is still not fully understood. In this regard, the aim of the work was a comparative analysis of the influence of the free proline accumulation on the activity of the photosynthetic apparatus parameters of transgenic wheat plants at reproductive period under variable weather conditions, as well as on their productivity.
Materials and Methods. The study involved non-transformed winter bread wheat plants of genotype UK 997/19 and transgenic lines of seed generation T2 obtained on their basis. The content of free proline, photosynthetic pigments and parameters of the photosynthetic apparatus activity were determined. The analysis of the elements of the crop structure was carried out at full ripeness.
Results. Under conditions of increased air temperature or lack of moisture in the soil, it was established that the total chlorophyll content in the leaves of plants of the transgenic lines at milk-wax maturity exceeded its level in the wild-type plants by 15.9–32.5 %. At this phase, they had a higher effective quantum yield (ϕPSII) by 16–28 %, the coefficient of photochemical quenching (qP) by 23–26 % and the fraction of open reaction centers (qL) by 28–61 % of photosystem II (PSII). No specific regularities were found in the changes in the non-photochemical quenching parameter (NPQ) in the antenna complexes of PS II leaves of the transgenic plants relative to the wild-type ones. The grain yield of plants of the modified lines was higher than that of the wild type. A significant positive correlation was found between the grain productivity of the transgenic plants with the fraction of open reaction centers of PSII, the effective quantum yield and photochemical quenching of fluorescence parameter (the coefficient of determination of the relationship varied from 0.762 to 0.966).
Conclusions. The study results indicate that the elongation of the functioning of the flag leaf during the reproductive period and the higher activity of the photosynthetic apparatus in the transgenic wheat lines with an increased proline content under the conditions of increased air temperature or lack of moisture in the soil contributed to an increase of their grain productivity.
Keywords
Full Text:
PDFReferences
| Adel, S., & Carels, N. (2023). Plant tolerance to drought stress with emphasis on wheat. Plants, 12(11), 2170. doi:10.3390/plants 12112170 Crossref ● Google Scholar | ||||
| ||||
| Ahmed, H. G. M.-D., Li, M.-j., Khan, S. H., & Kashif, M. (2019). Early selection of bread wheat genotypes using morphological and photosynthetic attributes conferring drought tolerance. Journal of Integrative Agriculture, 18(11), 2483-2491. doi:10.1016/S2095-3119(18)62083-0 Crossref ● Google Scholar | ||||
| ||||
| Anjum, S., Ashraf, U., Zohaib, A., Tanveer, M., Naeem, M., Ali, I., Tabassum, T., & Nazir, U. (2017). Growth and developmental responses of crop plants under drought stress: a review. Zemdirbyste-Agriculture, 104(3), 267-276. doi:10.13080/z-a.2017.104.034 Crossref ● Google Scholar | ||||
| ||||
| Anwar, A., She, M., Wang, K., & Ye, X. (2020). Cloning and molecular characterization of Triticum aestivum ornithine amino transferase (TaOAT) encoding genes. BMC Plant Biology, 20(1), 187. doi:10.1186/s12870-020-02396-2 Crossref ● PubMed ● PMC ● Google Scholar | ||||
| ||||
| Anwar, A., Wang, K., & Wang, J. (2021). Expression of Arabidopsis ornithine aminotransferase (AtOAT) encoded gene enhances multiple abiotic stress tolerances in wheat. Plant Cell Reports, 40(7), 1155-1170. doi:10.21203/rs.3.rs-175437/v1 Crossref ● Google Scholar | ||||
| ||||
| Bai, X., Zhou, Y., Islam, M. A., Zhang, W., Ning, L., Ling, B., Wang, Y., Xu, Z., Sun, D., & Chen, M. (2022). A soybean GmDREB3 gene contributes to drought tolerance in wheat. Food and Energy Security, 11(4), e426. doi:10.1002/fes3.426 Crossref ● Google Scholar | ||||
| ||||
| Baker, N. R., & Rosenqvist, E. (2004). Applications of chlorophyll fluorescence can improve crop production strategies: an examination of future possibilities. Journal of Experimental Botany, 55(403), 1607-1621. doi:10.1093/jxb/erh196 Crossref ● PubMed ● Google Scholar | ||||
| ||||
| Bates, L. S., Waldren, R. P., & Teare, I. D. (1973). Rapid determination of free proline for water-stress studies. Plant and Soils, 39(1), 205-207. doi:10.1007/bf00018060 Crossref ● Google Scholar | ||||
| ||||
| Bekka, S., Abrous-Belbachir, O., & Djebbar, R. (2018). Effects of exogenous proline on the physiological characteristics of Triticum aestivum L. and Lens culinaris Medik. under drought stress. Acta Agriculturae Slovenica, 111(2), 477-491. doi:10.14720/aas.2018.111.2.20 Crossref ● Google Scholar | ||||
| ||||
| Borys Sreznevsky Central Geophysical Observatory. (n. d.). Retrieved from http://cgo-sreznevskyi.kyiv.ua/en/activity/klimatolohichna/climate-data-for-kyiv | ||||
| ||||
| Chovancek, E., Zivcak, M., Botyanszka, L., Hauptvogel, P., Yang, X., Misheva, S., Hussain, S., & Brestic, M. (2019). Transient heat waves may affect the photosynthetic capacity of susceptible wheat genotypes due to insufficient photosystem I photoprotection. Plants, 8(8), 282. doi:10.3390/plants8080282 Crossref ● PubMed ● PMC ● Google Scholar | ||||
| ||||
| De Lima, L. A. D. C., Schuster, I., da Costa, A. C. T., & Vendruscolo, E. C. G. (2019). Evaluation of wheat events transformed with the p5cs gene under conditions of water stress. Revista de Ciências Agrárias, 42(2), 448-455. doi:10.19084/rca17268 Crossref ● Google Scholar | ||||
| ||||
| Dubrovna, O. V., Priadkina, G. O., Mykhalska, S. I., & Komisarenko, A. G. (2022). Drought-tolerance of transgenic winter wheat with partial suppression of proline dehydrogenase gene. Regulatory Mechanisms in Biosystems, 13(4), 385-392. doi:10.15421/022251 Crossref ● Google Scholar | ||||
| ||||
| Dubrovna, O. V., Stasik, O. O., Priadkina, G. O., Zborivska, O. V., & Sokolovska-Sergienko O. G. (2020). Resistance of genetically modified wheat plants, containing a double-stranded RNA suppressor of the proline dehydrogenase gene, to soil moisture deficiency. Agricultural Science and Practice, 7(2), 24-34. doi:10.15407/agrisp7.02 Crossref ● Google Scholar | ||||
| ||||
| Dubrovna, O. V., & Slivka, L. V. (2021). Optimization of Agrobacterium-mediated transformation conditions of prospective genotypes of winter bread wheat by in planta method. Factors in Experimental Evolution of Organisms, 28, 66-71. doi:10.7124/feeo.v28.1377 (In Ukrainian) Crossref ● Google Scholar | ||||
| ||||
| Gao, H., Wang, Y., Xu, P., & Zhang Z. (2018). Overexpression of a WRKY transcription factor TaWRKY2 enhances drought stress tolerance in transgenic wheat. Frontiers in Plant Science, 9, 997. doi:10.3389/fpls.2018.00997 Crossref ● PubMed ● PMC ● Google Scholar | ||||
| ||||
| Ghosh, U. K., Islam, M. N., Siddiqui, M. N., Cao, X., & Khan, M. A. R. (2022). Proline, a multifaceted signalling molecule in plant responses to abiotic stress: understanding the physiological mechanisms. Plant Biology, 24(2), 227-239. doi:10.1111/plb.13363 Crossref ● PubMed ● Google Scholar | ||||
| ||||
| Haque, M. S., Kjaer, K. H., Rosenqvist, E., Sharma, D. K., & Ottosen, C.-O. (2014). Heat stress and recovery of photosystem II efficiency in wheat (Triticum aestivum L.) cultivars acclimated to different growth temperatures. Environmental and Experimental Botany, 99, 1-8. doi:10.1016/j.envexpbot.2013.10.017 Crossref ● Google Scholar | ||||
| ||||
| Jain, N., Singh, G. P., Pandey, R., P, Ramya, Singh, P. K., Nivedita, & Prabhu, K. V. (2018). Chlorophyll fluorescence kinetics and response of wheat (Triticum aestivum L.) under high temperature stress. Indian Journal of Experimental Biology, 56(03), 194-201. Retrieved from http://nopr.niscpr.res.in/handle/123456789/43662 Google Scholar | ||||
| ||||
| Jogawat, A. (2019). Osmolytes and their role in abiotic stress tolerance in plants. In: A. Roychoudhury, & D. Tripathi (Eds.), Molecular plant abiotic stress, (pp. 91-97). John Wiley & Sons, Ltd.: West Sussex. doi:10.1002/9781119463665.ch5 Crossref ● Google Scholar | ||||
| ||||
| Kamal, N. M., Alnor Gorafi, Y. S., Abdelrahman, M., Abdellatef, E., & Tsujimoto, H. (2019). Stay-green trait: a prospective approach for yield potential, and drought and heat stress adaptation in globally important cereals. International Journal of Molecular Sciences, 20(23), 5837. doi:10.3390/ijms20235837 Crossref ● PubMed ● PMC ● Google Scholar | ||||
| ||||
| Kaur, G., & Asthir, B. (2015). Proline: a key player in plant abiotic stress tolerance. Biologia Plantarum, 59(4), 609-619. doi:10.1007/s10535-015-0549-3 Crossref ● Google Scholar | ||||
| ||||
| Li, H., Liu, Y., Zhen, B., Lv, M., Zhou, X., Yong, B., Niu, Q., & Yang, S. (2024). Proline spray relieves the adverse effects of drought on wheat flag leaf function. Plants, 13(7), 957. doi:10.3390/plants13070957 Crossref ● PubMed ● PMC ● Google Scholar | ||||
| ||||
| Li, Y., Li, X., Li, Y., Zhuang, Z., Feng, Y., Lin, E., & Han, X. (2021). Does a large ear type wheat variety benefit more from elevated CO2 than that from small multiple ear-type in the quantum efficiency of PSII photochemistry? Frontiers in Plant Science, 12, 697823. doi:10.3389/fpls.2021.697823 Crossref ● PubMed ● PMC ● Google Scholar | ||||
| ||||
| Meena, М., Divyanshu, K., Kumar, S., Swapnil, P., Zehra, A., Shukla, V., Yadav, M., & Upadhyay, R. S. (2019). Regulation of L-proline biosynthesis, signal transduction, transport, accumulation and its vital role in plants during variable environmental conditions. Heliyon, 5(12), 02952. doi:10.1016/j.heliyon.2019.e02952 Crossref ● PubMed ● PMC ● Google Scholar | ||||
| ||||
| Monirul, I., Begum, M. C., Kabir, A. H., & Alam, M. F. (2015). Molecular and biochemical mechanisms associated with differential responses to drought tolerance in wheat (Triticum aestivum L.). Journal of Plant Interactions, 10(1), 195-201. doi:10.1080/17429145.2015.1064174 Crossref ● Google Scholar | ||||
| ||||
| Murchie, E. H., & Lawson, T. (2013). Chlorophyll fluorescence analysis: a guide to good practice and understanding some new applications. Journal of Experimental Botany, 64(13), 3983-3998. doi:10.1093/jxb/ert208 Crossref ● PubMed ● Google Scholar | ||||
| ||||
| Noor, S., Ali, S., Rehman, H., Ullah, F., & Ali, G. M. (2018). Comparative study of transgenic (DREB1A) and non-transgenic wheat lines on relative water content, sugar, proline and chlorophyll under drought and salt stresses. Sarhad Journal of Agriculture, 34(4), 986-993. doi:10.17582/journal.sja/2018/34.4.986.993 Crossref ● Google Scholar | ||||
| ||||
| Radzikowska, D., Sulewska, H., Bandurska, H., Ratajczak, K., Szymańska, G., Kowalczewski, P. Ł., & Głowicka-Wołoszyn, R. (2022). Analysis of physiological status in response to water deficit of spelt (Triticum aestivum ssp. spelta) cultivars in reference to common wheat (Triticum aestivum ssp. vulgare). Agronomy, 12(8), 1822. doi:10.3390/agronomy12081822 Crossref ● Google Scholar | ||||
| ||||
| Renu, K.-C., Vimal, S., Nita, L., & Ashwani, P. (2019). Proline - a key regulator conferring plant tolerance to salinity and drought. In: M. Hasanuzzaman, M. Fujita, H. Oku, & M. T. Islam (Eds.), Plant tolerance to environmental stress: role of phytoprotectants (pp. 59-80). CRC Press. doi:10.1201/9780203705315-5 Crossref ● Google Scholar | ||||
| ||||
| Sarker, U., & Oba, S. (2020). The response of salinity stress-induced A. tricolor to growth, anatomy, physiology, non-enzymatic and enzymatic antioxidants. Frontiers in Plant Science, 11, 1354. doi:10.3389/fpls.2020.559876 Crossref ● PubMed ● PMC ● Google Scholar | ||||
| ||||
| Sharma, D. K., Andersen, S. B., Ottosen, C. O., & Rosenqvist, E. (2015). Wheat cultivars selected for high Fv/Fm under heat stress maintain high photosynthesis, total chlorophyll, stomatal conductance, transpiration and dry matter. Physiologia Plantarum, 153(2), 284-298. doi:10.1111/ppl.12245 Crossref ● PubMed ● Google Scholar | ||||
| ||||
| Uhr, Z., Dobrikova, A., Borisova, P., Yotsova, E., Dimitrov, E., Chipilsky, R., &. Popova, A. V. (2022). Assessment of drought tolerance of eight varieties of common winter wheat - a comparative study. Bulgarian Journal of Agricultural Science, 28(4), 668-676. Google Scholar | ||||
| ||||
| Wang, S. H., Jing, Q., Dai, T. B., Jiang, D., & Cao, W. X. (2008). Evolution characteristics of flag leaf photosynthesis and grain yield of wheat cultivars bred in different years. The Journal of Applied Ecology, 19(6), 1255-1260. PubMed ● Google Scholar | ||||
| ||||
| Wellburn, A. P. (1994). The spectral determination of chlorophyll a and b, as well as carotenoids using various solvents with spectrophotometers of different resolution. Journal of Plant Physiology, 144(3), 307-313. doi:10.1016/s0176-1617(11)81192-2 Crossref ● Google Scholar | ||||
| ||||
| Yasir, T. A., Wasaya, A., Hussain, M., Ijaz, M., Farooq, M., Farooq, O., Nawaz, A., & Hu, Y. G. (2019). Evaluation of physiological markers for assessing drought tolerance and yield potential in bread wheat. Physiology and Molecular Biology of Plants, 25(5), 1163-1174. doi:10.1007/s12298-019-00694-0 Crossref ● PubMed ● PMC ● Google Scholar | ||||
| ||||
| Yu, T.-F., Xu, Z.-S., Guo, J.-K., Wang, Y.-X., Abernathy, B., Fu, J.-D., Chen, X., Zhou, Y.-B., Chen, M., Ye, X.-G., & Ma, Y.-Z. (2017). Improved drought tolerance in wheat plants overexpressing a synthetic bacterial cold shock protein gene SeCspA. Scientific Reports, 7(1), 44050. doi:10.1038/srep44050 Crossref ● PubMed ● PMC ● Google Scholar | ||||
Refbacks
- There are currently no refbacks.
Copyright (c) 2025 Galyna Priadkina, Oksana Dubrovna, Serhiy Sytnyk, Maksym Tarasiuk

This work is licensed under a Creative Commons Attribution 4.0 International License.
