ACTIVITY OF THE PHOTOSYNTHETIC APPARATUS AND PRODUCTIVITY OF TRANSGENIC WINTER WHEAT PLANTS WITH PARTIAL SUPPRESSION OF THE PROLINE DEHYDROGENASE GENE

Galyna Priadkina, Oksana Dubrovna, Serhiy Sytnyk, Maksym Tarasiuk


DOI: http://dx.doi.org/10.30970/sbi.1902.821

Abstract


Background. Partial suppression of the proline dehydrogenase (ProDH) gene in transgenic winter wheat plants leads to an increase in the level of free proline accumulation. However, the effect of increasing the content of this amino acid on the physiological and biochemical characteristics of this crop is still not fully understood. In this regard, the aim of the work was a comparative analysis of the influence of the free proline accumulation on the activity of the photosynthetic apparatus parameters of transgenic wheat plants at reproductive period under variable weather conditions, as well as on their productivity.
Materials and Methods. The study involved non-transformed winter bread wheat plants of genotype UK 997/19 and transgenic lines of seed generation T2 obtained on their basis. The content of free proline, photosynthetic pigments and parameters of the photosynthetic apparatus activity were determined. The analysis of the elements of the crop structure was carried out at full ripeness.
Results. Under conditions of increased air temperature or lack of moisture in the soil, it was established that the total chlorophyll content in the leaves of plants of the transgenic lines at milk-wax maturity exceeded its level in the wild-type plants by 15.9–32.5 %. At this phase, they had a higher effective quantum yield (ϕPSII) by 16–28 %, the coefficient of photochemical quenching (qP) by 23–26 % and the fraction of open reaction centers (qL) by 28–61 % of photosystem II (PSII). No specific regularities were found in the changes in the non-photochemical quenching parameter (NPQ) in the antenna complexes of PS II leaves of the transgenic plants relative to the wild-type ones. The grain yield of plants of the modified lines was higher than that of the wild type. A significant positive correlation was found between the grain productivity of the transgenic plants with the fraction of open reaction centers of PSII, the effective quantum yield and photochemical quenching of fluorescence parameter (the coefficient of determination of the relationship varied from 0.762 to 0.966).
Conclusions. The study results indicate that the elongation of the functioning of the flag leaf during the reproductive period and the higher activity of the photosynthetic apparatus in the transgenic wheat lines with an increased proline content under the conditions of increased air temperature or lack of moisture in the soil contributed to an increase of their grain productivity.


Keywords


wheat, transgenic plants, proline, chlorophyll a fluorescence, grain yield

Full Text:

PDF

References


Adel, S., & Carels, N. (2023). Plant tolerance to drought stress with emphasis on wheat. Plants, 12(11), 2170. doi:10.3390/plants 12112170
CrossrefGoogle Scholar

Ahmed, H. G. M.-D., Li, M.-j., Khan, S. H., & Kashif, M. (2019). Early selection of bread wheat genotypes using morphological and photosynthetic attributes conferring drought tolerance. Journal of Integrative Agriculture, 18(11), 2483-2491. doi:10.1016/S2095-3119(18)62083-0
CrossrefGoogle Scholar

Anjum, S., Ashraf, U., Zohaib, A., Tanveer, M., Naeem, M., Ali, I., Tabassum, T., & Nazir, U. (2017). Growth and developmental responses of crop plants under drought stress: a review. Zemdirbyste-Agriculture, 104(3), 267-276. doi:10.13080/z-a.2017.104.034
CrossrefGoogle Scholar

Anwar, A., She, M., Wang, K., & Ye, X. (2020). Cloning and molecular characterization of Triticum aestivum ornithine amino transferase (TaOAT) encoding genes. BMC Plant Biology, 20(1), 187. doi:10.1186/s12870-020-02396-2
CrossrefPubMedPMCGoogle Scholar

Anwar, A., Wang, K., & Wang, J. (2021). Expression of Arabidopsis ornithine aminotransferase (AtOAT) encoded gene enhances multiple abiotic stress tolerances in wheat. Plant Cell Reports, 40(7), 1155-1170. doi:10.21203/rs.3.rs-175437/v1
CrossrefGoogle Scholar

Bai, X., Zhou, Y., Islam, M. A., Zhang, W., Ning, L., Ling, B., Wang, Y., Xu, Z., Sun, D., & Chen, M. (2022). A soybean GmDREB3 gene contributes to drought tolerance in wheat. Food and Energy Security, 11(4), e426. doi:10.1002/fes3.426
CrossrefGoogle Scholar

Baker, N. R., & Rosenqvist, E. (2004). Applications of chlorophyll fluorescence can improve crop production strategies: an examination of future possibilities. Journal of Experimental Botany, 55(403), 1607-1621. doi:10.1093/jxb/erh196
CrossrefPubMedGoogle Scholar

Bates, L. S., Waldren, R. P., & Teare, I. D. (1973). Rapid determination of free proline for water-stress studies. Plant and Soils, 39(1), 205-207. doi:10.1007/bf00018060
CrossrefGoogle Scholar

Bekka, S., Abrous-Belbachir, O., & Djebbar, R. (2018). Effects of exogenous proline on the physiological characteristics of Triticum aestivum L. and Lens culinaris Medik. under drought stress. Acta Agriculturae Slovenica, 111(2), 477-491. doi:10.14720/aas.2018.111.2.20
CrossrefGoogle Scholar

Borys Sreznevsky Central Geophysical Observatory. (n. d.). Retrieved from http://cgo-sreznevskyi.kyiv.ua/en/activity/klimatolohichna/climate-data-for-kyiv

Chovancek, E., Zivcak, M., Botyanszka, L., Hauptvogel, P., Yang, X., Misheva, S., Hussain, S., & Brestic, M. (2019). Transient heat waves may affect the photosynthetic capacity of susceptible wheat genotypes due to insufficient photosystem I photoprotection. Plants, 8(8), 282. doi:10.3390/plants8080282
CrossrefPubMedPMCGoogle Scholar

De Lima, L. A. D. C., Schuster, I., da Costa, A. C. T., & Vendruscolo, E. C. G. (2019). Evaluation of wheat events transformed with the p5cs gene under conditions of water stress. Revista de Ciências Agrárias, 42(2), 448-455. doi:10.19084/rca17268
CrossrefGoogle Scholar

Dubrovna, O. V., Priadkina, G. O., Mykhalska, S. I., & Komisarenko, A. G. (2022). Drought-tolerance of transgenic winter wheat with partial suppression of proline dehydrogenase gene. Regulatory Mechanisms in Biosystems, 13(4), 385-392. doi:10.15421/022251
CrossrefGoogle Scholar

Dubrovna, O. V., Stasik, O. O., Priadkina, G. O., Zborivska, O. V., & Sokolovska-Sergienko O. G. (2020). Resistance of genetically modified wheat plants, containing a double-stranded RNA suppressor of the proline dehydrogenase gene, to soil moisture deficiency. Agricultural Science and Practice, 7(2), 24-34. doi:10.15407/agrisp7.02
CrossrefGoogle Scholar

Dubrovna, O. V., & Slivka, L. V. (2021). Optimization of Agrobacterium-mediated transformation conditions of prospective genotypes of winter bread wheat by in planta method. Factors in Experimental Evolution of Organisms, 28, 66-71. doi:10.7124/feeo.v28.1377 (In Ukrainian)
CrossrefGoogle Scholar

Gao, H., Wang, Y., Xu, P., & Zhang Z. (2018). Overexpression of a WRKY transcription factor TaWRKY2 enhances drought stress tolerance in transgenic wheat. Frontiers in Plant Science, 9, 997. doi:10.3389/fpls.2018.00997
CrossrefPubMedPMCGoogle Scholar

Ghosh, U. K., Islam, M. N., Siddiqui, M. N., Cao, X., & Khan, M. A. R. (2022). Proline, a multifaceted signalling molecule in plant responses to abiotic stress: understanding the physiological mechanisms. Plant Biology, 24(2), 227-239. doi:10.1111/plb.13363
CrossrefPubMedGoogle Scholar

Haque, M. S., Kjaer, K. H., Rosenqvist, E., Sharma, D. K., & Ottosen, C.-O. (2014). Heat stress and recovery of photosystem II efficiency in wheat (Triticum aestivum L.) cultivars acclimated to different growth temperatures. Environmental and Experimental Botany, 99, 1-8. doi:10.1016/j.envexpbot.2013.10.017
CrossrefGoogle Scholar

Jain, N., Singh, G. P., Pandey, R., P, Ramya, Singh, P. K., Nivedita, & Prabhu, K. V. (2018). Chlorophyll fluorescence kinetics and response of wheat (Triticum aestivum L.) under high temperature stress. Indian Journal of Experimental Biology, 56(03), 194-201. Retrieved from http://nopr.niscpr.res.in/handle/123456789/43662
Google Scholar

Jogawat, A. (2019). Osmolytes and their role in abiotic stress tolerance in plants. In: A. Roychoudhury, & D. Tripathi (Eds.), Molecular plant abiotic stress, (pp. 91-97). John Wiley & Sons, Ltd.: West Sussex. doi:10.1002/9781119463665.ch5
CrossrefGoogle Scholar

Kamal, N. M., Alnor Gorafi, Y. S., Abdelrahman, M., Abdellatef, E., & Tsujimoto, H. (2019). Stay-green trait: a prospective approach for yield potential, and drought and heat stress adaptation in globally important cereals. International Journal of Molecular Sciences, 20(23), 5837. doi:10.3390/ijms20235837
CrossrefPubMedPMCGoogle Scholar

Kaur, G., & Asthir, B. (2015). Proline: a key player in plant abiotic stress tolerance. Biologia Plantarum, 59(4), 609-619. doi:10.1007/s10535-015-0549-3
CrossrefGoogle Scholar

Li, H., Liu, Y., Zhen, B., Lv, M., Zhou, X., Yong, B., Niu, Q., & Yang, S. (2024). Proline spray relieves the adverse effects of drought on wheat flag leaf function. Plants, 13(7), 957. doi:10.3390/plants13070957
CrossrefPubMedPMCGoogle Scholar

Li, Y., Li, X., Li, Y., Zhuang, Z., Feng, Y., Lin, E., & Han, X. (2021). Does a large ear type wheat variety benefit more from elevated CO2 than that from small multiple ear-type in the quantum efficiency of PSII photochemistry? Frontiers in Plant Science, 12, 697823. doi:10.3389/fpls.2021.697823
CrossrefPubMedPMCGoogle Scholar

Meena, М., Divyanshu, K., Kumar, S., Swapnil, P., Zehra, A., Shukla, V., Yadav, M., & Upadhyay, R. S. (2019). Regulation of L-proline biosynthesis, signal transduction, transport, accumulation and its vital role in plants during variable environmental conditions. Heliyon, 5(12), 02952. doi:10.1016/j.heliyon.2019.e02952
CrossrefPubMedPMCGoogle Scholar

Monirul, I., Begum, M. C., Kabir, A. H., & Alam, M. F. (2015). Molecular and biochemical mechanisms associated with differential responses to drought tolerance in wheat (Triticum aestivum L.). Journal of Plant Interactions, 10(1), 195-201. doi:10.1080/17429145.2015.1064174
CrossrefGoogle Scholar

Murchie, E. H., & Lawson, T. (2013). Chlorophyll fluorescence analysis: a guide to good practice and understanding some new applications. Journal of Experimental Botany, 64(13), 3983-3998. doi:10.1093/jxb/ert208
CrossrefPubMedGoogle Scholar

Noor, S., Ali, S., Rehman, H., Ullah, F., & Ali, G. M. (2018). Comparative study of transgenic (DREB1A) and non-transgenic wheat lines on relative water content, sugar, proline and chlorophyll under drought and salt stresses. Sarhad Journal of Agriculture, 34(4), 986-993. doi:10.17582/journal.sja/2018/34.4.986.993
CrossrefGoogle Scholar

Radzikowska, D., Sulewska, H., Bandurska, H., Ratajczak, K., Szymańska, G., Kowalczewski, P. Ł., & Głowicka-Wołoszyn, R. (2022). Analysis of physiological status in response to water deficit of spelt (Triticum aestivum ssp. spelta) cultivars in reference to common wheat (Triticum aestivum ssp. vulgare). Agronomy, 12(8), 1822. doi:10.3390/agronomy12081822
CrossrefGoogle Scholar

Renu, K.-C., Vimal, S., Nita, L., & Ashwani, P. (2019). Proline - a key regulator conferring plant tolerance to salinity and drought. In: M. Hasanuzzaman, M. Fujita, H. Oku, & M. T. Islam (Eds.), Plant tolerance to environmental stress: role of phytoprotectants (pp. 59-80). CRC Press. doi:10.1201/9780203705315-5
CrossrefGoogle Scholar

Sarker, U., & Oba, S. (2020). The response of salinity stress-induced A. tricolor to growth, anatomy, physiology, non-enzymatic and enzymatic antioxidants. Frontiers in Plant Science, 11, 1354. doi:10.3389/fpls.2020.559876
CrossrefPubMedPMCGoogle Scholar

Sharma, D. K., Andersen, S. B., Ottosen, C. O., & Rosenqvist, E. (2015). Wheat cultivars selected for high Fv/Fm under heat stress maintain high photosynthesis, total chlorophyll, stomatal conductance, transpiration and dry matter. Physiologia Plantarum, 153(2), 284-298. doi:10.1111/ppl.12245
CrossrefPubMedGoogle Scholar

Uhr, Z., Dobrikova, A., Borisova, P., Yotsova, E., Dimitrov, E., Chipilsky, R., &. Popova, A. V. (2022). Assessment of drought tolerance of eight varieties of common winter wheat - a comparative study. Bulgarian Journal of Agricultural Science, 28(4), 668-676.
Google Scholar

Wang, S. H., Jing, Q., Dai, T. B., Jiang, D., & Cao, W. X. (2008). Evolution characteristics of flag leaf photosynthesis and grain yield of wheat cultivars bred in different years. The Journal of Applied Ecology, 19(6), 1255-1260.
PubMedGoogle Scholar

Wellburn, A. P. (1994). The spectral determination of chlorophyll a and b, as well as carotenoids using various solvents with spectrophotometers of different resolution. Journal of Plant Physiology, 144(3), 307-313. doi:10.1016/s0176-1617(11)81192-2
CrossrefGoogle Scholar

Yasir, T. A., Wasaya, A., Hussain, M., Ijaz, M., Farooq, M., Farooq, O., Nawaz, A., & Hu, Y. G. (2019). Evaluation of physiological markers for assessing drought tolerance and yield potential in bread wheat. Physiology and Molecular Biology of Plants, 25(5), 1163-1174. doi:10.1007/s12298-019-00694-0
CrossrefPubMedPMCGoogle Scholar

Yu, T.-F., Xu, Z.-S., Guo, J.-K., Wang, Y.-X., Abernathy, B., Fu, J.-D., Chen, X., Zhou, Y.-B., Chen, M., Ye, X.-G., & Ma, Y.-Z. (2017). Improved drought tolerance in wheat plants overexpressing a synthetic bacterial cold shock protein gene SeCspA. Scientific Reports, 7(1), 44050. doi:10.1038/srep44050
CrossrefPubMedPMCGoogle Scholar


Refbacks

  • There are currently no refbacks.


Copyright (c) 2025 Galyna Priadkina, Oksana Dubrovna, Serhiy Sytnyk, Maksym Tarasiuk

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.