INFLUENCE OF THE BIOPHOSPHOMAG PREPARATION AND BIOLOGICALLY ACTIVE SUBSTANCES FROM MILK THISTLE SEEDS (SILYBUM MARIANUM) ON THE METABOLISM OF LYMPHOCYTES AND THEIR FUNCTIONAL FEATURES

Petro Fedyshyn, Olga Pavliuk, Ivan Stupak, Taisa Dovbynchuk, Yulia Pysmenna, Volodymyr Liashenko, Natalia Senchylo, Serhii Holopura, Liliia Kalachniuk, Liudmyla Garmanchuk


DOI: http://dx.doi.org/10.30970/sbi.1902.824

Abstract


Background. The OVA and patented OVA+ preparations (produced by NULES of Ukraine) were obtained according to O. V. Arnauta et al. (2021) by extracting biologically active compounds from the seeds of milk thistle (Silybum marianum) using corn oil. Milk thistle seeds are a rich source of flavolignans, flavonoids, vitamins, tannins, macro- and microelements.
The patented preparation BioPhosphoMag (V3), also developed by NULES of Ukraine, is based on artificially phosphorylated casein from cow’s milk as a ligand and magnesium ions as a complexing agent (Palonko et al., 2022 a). These preparations possess protective properties and may enhance cellular adaptation processes (Khyzhniak et al., 2022; Palonko et al., 2022a,b). According to preliminary data, the preparations exhibit choleretic activity and help stabilize liver and digestive functions. Their potential effects on the metabolism of immune system cells require further study.
Considering that the immune system is adaptive and functions to protect the body by suppressing pathogenic microorganisms and tumor growth through a series of coordina­ted signals that regulate activation, proliferation, and differentiation of T cell populations, the aim of this study was to assess proliferative activity, cell viability, and SH-group levels in lymphocytes under the influence of the OVA, OVA+, and V3 protective agents.
Materials and Methods. The study evaluated mitochondrial dehydrogenase acti­vity using the MTT assay, glucose levels in the culture medium via the glucose oxidase method, and the concentrations of total and protein-bound SH-groups in T lymphocytes exposed to OVA, OVA+, and V3.
Results. A comparative analysis of the effects of OVA, OVA+, and V3 on cultured T lymphocytes of the MT-4 cell line and primary rat T lymphocyte cultures confirmed the safety of these biopreparations within the tested concentration range (0.031–1.0 mg/mL). OVA+ significantly increased mitochondrial dehydrogenase activity (MTT assay), indicating enhanced cell viability compared to the control, while OVA exhibited slight suppression. Glucose levels in the culture medium remained unchanged under OVA and V3 treatment. However, OVA+ treatment resulted in a 1.5-fold (p <0.05) and 2-fold (p <0.05) increase in glucose levels in primary rat T lymphocyte cultures and MT-4 cells, respectively, compared to the control. Furthermore, the levels of total and protein-bound SH-groups in MT-4 cells were significantly elevated under OVA+ treatment, while no changes were observed with OVA or V3.
Conclusions. V3, OVA and OVA+ preparations do not exhibit cytotoxic or cytostatic effects on T lymphocytes. The most pronounced effect is exerted by the OVA+ preparation, which causes an increase in the level of glucose in the culture medium and the activity of dehydrogenases, as well as an increase in the content of SH-groups in cells, which indicates its potential in supporting cellular metabolism and protection. At the same time, V3 and OVA demonstrated a neutral effect under the specified conditions.


Keywords


T lymphocytes, biological preparations, glucose level, SH-group

Full Text:

PDF

References


Alley, M. C., Scudiero, D. A., Monks, A., Hursey, M. L., Czerwinski, M. J., Fine, D. L., Abbott, B. J., Mayo, J. G., Shoemaker, R. H., & Boyd, M. R. (1988). Feasibility of drug screening with panels of human tumor cell lines using a microculture tetrazolium assay. Cancer Research, 48(3), 589-601.
PubMedGoogle Scholar

Arnauta, O. V., Mykhailiuk, M. M., Kalachniuk, L. H., Fedyshyn, P. M., & Pavliuk, O. V. (2021). The method of manufacturing the preparation for veterinary use "OVA+". (Patent of Ukraine No. 147929). Ukrainian Institute of Industrial Property. Retrieved from https://iprop-ua.com/inv/90jtgkte (In Ukrainian)

Banczyk, D., Kalies, K., Nachbar, L., Bergmann, L., Schmidt, P., Bode, U., Teegen, B., Steven, P., Lange, T., Textor, J., Ludwig, R. J., Stöcker, W., König, P., Bell, E., & Westermann, J. (2013). Activated CD4+ T cells enter the splenic T cell zone and induce autoantibody-producing germinal centers through bystander activation. European Journal of Immunology, 44(1), 93-102. doi:10.1002/eji.201343811
CrossrefPubMedPMCGoogle Scholar

Berridge, M. V., & Tan, A. S. (1993). Characterization of the cellular reduction of 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT): subcellular localization, substrate dependence, and involvement of mitochondrial electron transport in MTT reduction. Archives of Biochemistry and Biophysics, 303(2), 474-482. doi:10.1006/abbi.1993.1311
CrossrefPubMedGoogle Scholar

Cao, J., Liao, S., Zeng, F., Liao, Q., Luo, G., & Zhou, Y. (2023). Effects of altered glycolysis levels on CD8+ T cell activation and function. Cell Death & Disease, 14(7), 407. doi:10.1038/s41419-023-05937-3
CrossrefPubMedPMCGoogle Scholar

Chang, C. H., Curtis, J. D., Maggi, L. B., Faubert, B., Villarino, A. V., O'Sullivan, D., Huang, S. C. C., van der Windt, G. J. W., Blagih, J., Qiu, J., Weber, J. D., Pearce, E. J., Jones, R. G., & Pearce, E. L. (2013). Posttranscriptional control of T cell effector function by aerobic glycolysis. Cell, 153(6), 1239-1251. doi:10.1016/j.cell.2013.05.016
CrossrefPubMedPMCGoogle Scholar

Chapman, N. M., & Chi, H. (2022). Metabolic adaptation of lymphocytes in immunity and disease. Immunity, 55(1), 14-30. doi:10.1016/j.immuni.2021.12.012
CrossrefPubMedPMCGoogle Scholar

Diniz, V. L. S., Alvares-Saraiva, A. M., Serdan, T. D. A., dos Santos-Oliveira, L. C., Cruzat, V., Lobato, T. B., Manoel, R., Alecrim, A. L., Machado, O. A., Hirabara, S. M., Masi, L. N., Pithon-Curi, T. C., Curi, R., Gorjão, R., & Newsholme, P. (2023). Essential metabolism required for T and B lymphocyte functions: an update. Clinical Science, 137(10), 807-821. doi:10.1042/cs20220869
CrossrefPubMedGoogle Scholar

Dringen, R. & Hamprecht, B. (1998). Glutathione restoration as indicator for cellular metabolism of astroglial cells. Developmental Neuroscience, 20(4-5), 401-407. doi:10.1159/000017337
CrossrefPubMedGoogle Scholar

Fox, C. J., Hammerman, P. S., & Thompson, C. B. (2005). Fuel feeds function: energy metabolism and the T cell response. Nature Reviews Immunology, 5(10), 844-852. doi:10.1038/nri1710
CrossrefPubMedGoogle Scholar

Franzese, O., Ancona, P., Bianchi, N., & Aguiari, G. (2024). Apoptosis, a metabolic "head-to-head" between tumor and T cells: implications for immunotherapy. Cells, 13(11), 924. doi:10.3390/cells13110924
CrossrefPubMedPMCGoogle Scholar

Gerriets, V. A., Kishton, R. J., Nichols, A. G., Macintyre, A. N., Inoue, M., Ilkayeva, O., … Rathmell, J. C. (2015). Metabolic programming and PDHK1 control CD4+ T cell subsets and inflammation. The Journal of Clinical Investigation, 125(1), 194-207. doi:10.1172/jci76012
CrossrefPubMedPMCGoogle Scholar

Harders, A. R., Watermann, P., Karger, G., Denieffe, S. C., Weller, A., Dannemann, A. C., Willker, J. E., Köhler, Y., Arend, C., & Dringen, R. (2024). Consequences of a 2-deoxyglucose exposure on the ATP content and the cytosolic glucose metabolism of cultured primary rat astrocytes. Neurochemistry Research, 49(12), 3244-3262. doi:10.1007/s11064-024-04192-y
CrossrefPubMedPMCGoogle Scholar

Hempel, S. L., Buettner, G. R., O'Malley, Y. Q., Wessels, D. A., & Flaherty, D. M. (1999). Dihydrofluorescein diacetate is superior for detecting intracellular oxidants: comparison with 2',7'-dichlorodihydrofluorescein diacetate, 5-(and 6)-carboxy-2',7'-dichlorodihydrofluorescein diacetate, and dihydrorhodamine 123. Free Radical Biology and Medicine, 27(1-2), 146-159. doi:10.1016/s0891-5849(99)00061-1
CrossrefPubMedGoogle Scholar

Kishore, M., Cheung, K. C., Fu, H., Bonacina, F., Wang, G., Coe, D., ... & Marelli-Berg, F. M. (2017). Regulatory T cell migration is dependent on glucokinase-mediated glycolysis. Immunity, 47(5), 875-889.e10. doi:10.1016/j.immuni.2017.10.017
CrossrefPubMedPMCGoogle Scholar

Krawczyk, C. M., Holowka, T., Sun, J., Blagih, J., Amiel, E., DeBerardinis, R. J., Cross, J. R., Jung, E., Thompson, C. B., Jones, R. G., & Pearce, E. J. (2010). Toll-like receptor-induced changes in glycolytic metabolism regulate dendritic cell activation. Blood, 115(23), 4742-4749. doi:10.1182/blood-2009-10-249540
CrossrefPubMedPMCGoogle Scholar

Khyzhnyak, S. V., Midyk, S. V., Velinska, A. O., Arnauta, O. V., & Kalachniuk, L. Н. (2022). Fatty acid profile of the liver lipids under acute fungicide action and intake of a biologically active preparation in rats. The Ukrainian Biochemical Journal, 94(4), 47-53. doi:10.15407/ubj94.04.047
CrossrefGoogle Scholar

Liberti, M. V., & Locasale, J. W. (2016). The Warburg effect: how does it benefit cancer cells? Trends in Biochemical Sciences, 41(3), 211-218. doi:10.1016/j.tibs.2015.12.001
CrossrefPubMedPMCGoogle Scholar

Luengo, A., Li, Z., Gui, D. Y., Sullivan, L. B., Zagorulya, M., Do, B. T., ... & Vander Heiden, M. G. (2021). Increased demand for NAD+ relative to ATP drives aerobic glycolysis. Molecular Cell, 81(4), 691-707.e6. doi:10.1016/j.molcel.2020.12.012
CrossrefPubMedPMCGoogle Scholar

MacIver, N. J., Jacobs, S. R., Wieman, H. L., Wofford, J. A., Coloff, J. L., & Rathmell, J. C. (2008). Glucose metabolism in lymphocytes is a regulated process with significant effects on immune cell function and survival. Journal of Leukocyte Biology, 84(4), 949-957. doi:10.1189/jlb.0108024
CrossrefPubMedPMCGoogle Scholar

Maslii, Y., Garmanchuk, L., Ruban, O., Dovbynchuk, T., Herbina, N., Kasparaviciene, G., & Bernatoniene, J. (2023). The study of the cytotoxicity, proliferative and microbiological activity of the medicated chewing gum with ascorbic acid and lysozyme hydrochloride using different culture of cells. Pharmaceutics, 15(7), 1894. doi:10.3390/pharmaceutics15071894
CrossrefPubMedPMCGoogle Scholar

Michalek, R. D., Gerriets, V. A., Jacobs, S. R., Macintyre, A. N., MacIver, N. J., Mason, E. F., Sullivan, S. A., Nichols, A. G., & Rathmell, J. C. (2011). Cutting edge: distinct glycolytic and lipid oxidative metabolic programs are essential for effector and regulatory CD4+ T cell subsets. Journal of Immunology, 186(6), 3299-3303. doi:10.4049/jimmunol.1003613
CrossrefPubMedPMCGoogle Scholar

Mosmann, T. (1983). Rapid colorimetric assay for cellular growth and survival: application to proliferation and cytotoxic assays. Journal of Immunological Methods, 65(1-2), 55-63. doi:10.1016/0022-1759(83)90303-4
CrossrefPubMedGoogle Scholar

Nikolaienko, T. V., Nikulina, V. V., Shelest, D. V., & Garmanchuk, L. V. (2016). The mechanism of VEGF-mediated endothelial cells survival and proliferation in conditions of unfed-culture. The Ukrainian Biochemical Journal, 88(4), 12-19. doi:10.15407/ubj88.04.012
CrossrefPubMedGoogle Scholar

O'Neill, L. A. J., & Pearce, E. J. (2016). Immunometabolism governs dendritic cell and macrophage function. Journal of Experimental Medicine, 213(1), 15-23. doi:10.1084/jem.20151570
CrossrefPubMedPMCGoogle Scholar

Palonko, R. I., Kalachniuk, L. H., Arnauta, O. V., Mykhailiuk, M. M., Arnauta, N. V., Pavliuk, O. V., & Fedyshyn, P. M. (2022a). Manufacturing method of veterinary drug "Biophosphomag". (Patent of Ukraine for utility model No. 150210). Bulletin of the Patent Office of Ukraine, No. 2. Retrieved from https://iprop-ua.com/inv/f6smia3u (In Ukrainian)

Palonko, R. I. (2022b). Biochemical effect of the Biophosphomag medication on the biochemical blood indicators in rats under oxidative stress conditions. The Animal Biology, 24(3), 39-43. doi:10.15407/animbiol24.03.039 (In Ukrainian)
Crossref

Stockert, J. C., Blázquez-Castro, A., Cañete, M., Horobin, R. W., & Villanueva, Á. (2012). MTT assay for cell viability: intracellular localization of the formazan product is in lipid droplets. Acta Histochemica, 114(8), 785-796. doi:10.1016/j.acthis.2012.01.006
CrossrefPubMedGoogle Scholar

Sun, L., Su,Y., Jiao, A., Wang, X., & Zhang, B. (2023). T cells in health and disease. Signal Transduction and Targeted Therapy, 8(1), 235. doi:10.1038/s41392-023-01471-y
CrossrefPubMedPMCGoogle Scholar

Ulrich, K., & Jakob, U. (2019). The role of thiols in antioxidant systems. Free Radical Biology and Medicine, 140, 14-27. doi:10.1016/j.freeradbiomed.2019.05.035
CrossrefPubMedPMCGoogle Scholar

Wieman, H. L., Wofford, J. A., & Rathmell, J. C. (2007). Cytokine stimulation promotes glucose uptake via phosphatidylinositol-3 kinase/akt regulation of Glut1 activity and trafficking. Molecular Biology of the Cell, 18(4), 1437-1446. doi:10.1091/mbc.E06-07-0593
CrossrefPubMedPMCGoogle Scholar

Yang, Y., & Sauve, A. A. (2016). NAD+ metabolism: bioenergetics, signaling and manipulation for therapy. Biochimica et Biophysica Acta (BBA) - Proteins and Proteomics, 1864(12), 1787-1800. doi:10.1016/j.bbapap.2016.06.014
CrossrefPubMedPMCGoogle Scholar

Zhang, M., Zhou, Y., Xie, Z., Luo, S., Zhou, Z., Huang, J., & Zhao, B. (2022). New developments in T cell immunometabolism and therapeutic implications for type 1 diabetes. Frontiers in Endocrinology, 13, 914136. doi:10.3389/fendo.2022.914136
CrossrefPubMedPMCGoogle Scholar


Refbacks

  • There are currently no refbacks.


Copyright (c) 2025 Petro Fedyshyn, Olga Pavliuk, Ivan Stupak, Taisa Dovbynchuk, Yulia Pysmenna, Volodymyr Liashenko, Natalia Senchylo, Serhii Holopura, Liliia Kalachniuk, Liudmyla Garmanchuk

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.