THE ANTIOXIDANT ROLE OF LOW MOLECULAR METABOLITES AND POLYPHENOL OXIDASE OF BRYOPHYTES IN POST-TECHNOGENIC TERRITORIES

Oksana Baik, Roman Sokhanchak, Vasyl Humenyuk


DOI: http://dx.doi.org/10.30970/sbi.1902.822

Abstract


Background. The antioxidant system (AOS), which includes both high-molecular and low-molecular antioxidants, plays an important role in protecting plants from oxidative stress. Previous studies have shown that exposure to high temperature and insolation caused an increase in the activity and thermal stability of antioxidant enzymes, which can be considered a mechanism of adaptation of the protein-synthesizing system to the effects of high temperatures. The enzymatic antioxidant system does not provide 100 % protection to plant cells under stress. Antioxidant metabolites play an important role in plant adaptation to hyperthermia and other abiotic stress factors that lead to the generation of excessive amounts of ROS. The protective role of low-molecular-weight antioxidants in the development of stress tolerance to abnormally high temperatures and insolation, as well as changes in the activity of polyphenol oxidase (PPO) and phenolic content in bryophytes, has not been sufficiently studied. Therefore, the aim of the work was to study seasonal changes in the quantitative content of phenolic compounds (PhC), anthocyanin and carotenoid pigment complexes in mosses in post-anthropogenic areas, as well as changes in PPO activity as indicators of abiotic stress.
Materials and Methods. The objects of research were: the dominant moss species Ptychostomum imbricatulum (Müll. Hal.) Holyoak & N. Pedersen in the experimental areas of the sulfur mining dump of the Novoyavoriv State Mining and Chemical Enterprise “Sirka” (Lviv region), as well as the new species for the flora of Ukraine Campylopus introflexus (Hedw.) Brid., which was first discovered on the technogenic substrates the “Nadiya” mine dump in the Chervonohrad mining and industrial district, and later on former peat quarries in the vicinity of Lopatyn and Olesko in Lviv region. The research was conducted in the summer and autumn of 2023. The intensity of lighting in the experimental areas was measured with a GM1030C luxmeter (Benetech, China).
The determination of the total content of PhC in the gametophyte of mosses was carried out spectrophotometrically using the Folin-Denis reagent. Polyphenol oxidase activity was determined spectrophotometrically by the rate of oxidation of paraphenylenediamine. The quantitative content of carotenoids was determined using the method of D. Arnon. The content of anthocyanins was determined using a hydrochloric acid. The determination of flavonoids was carried out according to the method of A. Pekal. The results were statistically analyzed, determining the mean value, median, standard deviation (SD), and the first and the third quartiles for each characteristic in all the variants of the experiment.
Results and Discussion. The highest PhC content in C. introflexus plants from the studied areas was observed in July, August, and November, which is apparently due to the accumulation of these compounds under stressful conditions. The highest PPO activity in the gametophyte of the C. introflexus moss was observed in the summer in the northern section of the top of the “Nadiya” mine dump; in November, a higher PhC content and decreased PPO activity were detected. In summer, at high temperatures, light intensity, and pronounced moisture deficiency, an increase in the content of phenols, anthocyanins, carotenoids, and flavonoids was observed in samples of P. imbricatulum moss from the base to the top of the sulfur mining dump. In the autumn period, in response to decreasing temperature and light intensity, less intensive biosynthesis of antioxidant metabolites occurred on all research transects, although the trend of increasing of their content from the base to the top persisted.
Conclusion. The survival strategy of bryophytes under the intense influence of abiotic stress factors in the studied post-anthropogenic territories consists in increasing of the pool of low-molecular metabolites and an enhanced activity of polyphenol oxidase, which contributes to their stress resistance. Based on the research results, it can be assumed that the existence of P. imbricatulum and C. introflexus in post-technogenic territories initiates adaptogenesis and leads to the formation of mechanisms of moss resistance to the action of stress factors, which are based on nonspecific protective reactions that ensure the adaptation of the plant organism to changing environmental conditions.


Keywords


mosses, Ptychostomum imbricatulum, Campylopus introflexus, phenolic compounds, anthocyanins, carotenoids, flavonoids, polyphenol oxidase

Full Text:

PDF

References


Anahita, A., Asmah, R., & Fauziah, O. (2015). Evaluation of total phenolic content, total antioxidant activity, and antioxidant vitamin composition of pomegranate seed and juice. International Food Research Journal, 22(3), 1212-1217. doi:10.4172/2327-5146.1000164
CrossrefGoogle Scholar

Araji, S., Grammer, T. A., Gertzen, R., Anderson, S. D., Mikulic-Petkovsek, M., Veberic, R., Phu, M. L., Solar, A., Leslie, C. A., Dandekar, A. M., & Escobar, M. A. (2014). Novel roles for the polyphenol oxidase enzyme in secondary metabolism and the regulation of cell death in walnut. Plant Physiology, 164(3), 1191-1203. doi:10.1104/pp.113.228593
CrossrefPubMedPMCGoogle Scholar

Arbona, V., Hossain, Z., López-Climent, M. F., Pérez-Clemente, R. M., & Gómez-Cadenas, A. (2008). Antioxidant enzymatic activity is linked to waterlogging stress tolerance in citrus. Physiologia Plantarum, 132(4), 452-466. doi:10.1111/j.1399-3054.2007.01029.x
CrossrefPubMedGoogle Scholar

Arnon, D. I. (1949). Copper enzymes in isolated chloroplasts. Polyphenol oxidase in Beta vulgaris. Plant Physiology, 24(1), 1-15. doi:10.1104/pp.24.1.1
CrossrefPubMedPMCGoogle Scholar

Baik, O. L., Kyyak, N. Y., Humeniuk, O. M., & Humeniuk, V. V. (2021). Oxidative stress in moss Bryum caespiticium (Bryaceae) under the influence of high temperature and light intensity in a technogenically transformed environment. Regulatory Mechanisms in Biosystems, 12(4), 710-717. doi:10.15421/022198
CrossrefGoogle Scholar

Blokhina, O., Virolainen, E., & Fagerstedt, K. V. (2003). Antioxidants, oxidative damage and oxygen deprivation stress: a review. Annals of Botany, 91(2), 179-194. doi:10.1093/aob/mcf118
CrossrefPubMedPMCGoogle Scholar

Bobo-García, G., Davidov-Pardo, G., Arroqui, C., Vírseda, P., Marín-Arroyo, M. R., & Navarro, M. (2015). Intra-laboratory validation of microplate methods for total phenolic content and antioxidant activity on polyphenolic extracts, and comparison with conventional spectrophotometric methods. Journal of the Science of Food and Agriculture, 95(1), 204-209. doi:10.1002/jsfa.6706
CrossrefPubMedGoogle Scholar

Boeckx, T., Winters, A. L., Webb, K. J., & Kingston-Smith, A. H. (2015). Polyphenol oxidase in leaves: is there any significance to the chloroplastic localization? Journal of Experimental Botany, 66(12), 3571-3579. doi:10.1093/jxb/erv141
CrossrefPubMedGoogle Scholar

Bogdanović, M., Ilić, M., Živković, S., Sabovljević, A., Grubišić, D., & Sabovljević, M. (2011). Comparative study on the effects of NaCl on selected moss and fern representatives. Australian Journal of Botany, 59(8), 734-740. doi:10.1071/bt11059
CrossrefGoogle Scholar

Burlaka, I. S., Kyslychenko, V. S., Omelchenko, Z. I., & Korol, V. V. (2021). Doslidzhennia antotsianiv zhymolosti blakytnoi plodiv [Study of anthocyanins in fruits of Lonicera coerulea]. Medical and Clinical Chemistry, 1, 75-79. doi:10.11603/mcch.2410-681x.2021.i1.12111 (In Ukrainian)
CrossrefGoogle Scholar

Durand, E., Zhao, Y., Ruesgas-Ramón, M., Figueroa-Espinoza, M. C., Lamy, S., Coupland, J. N., Elias, R. J., & Villeneuve, P. (2019). Evaluation of antioxidant activity and interaction with radical species using the vesicle conjugated autoxidizable triene (VesiCAT) assay. European Journal of Lipid Science and Technology, 121(5), 1800419. doi:10.1002/ejlt.201800419
CrossrefGoogle Scholar

Edreva, A., Velikova, V., Tsonev, T., Dagnon, S., Gürel, A., Aktaş, L., & Gesheva, E. (2008). Stress-protective role of secondary metabolites: diversity of functions and mechanisms. General and Applied Plant Physiology, 34(1-2), 67-78.
Google Scholar

Eghbaliferiz, S., & Iranshahi, M. (2016). Prooxidant activity of polyphenols, flavonoids, anthocyanins and carotenoids: updated review of mechanisms and catalyzing metals. Phytotherapy Research, 30(9), 1379-1391. doi:10.1002/ptr.5643
CrossrefPubMedGoogle Scholar

Han, R.-M., Zhang, J.-P., & Skibsted, L. H. (2012). Reaction dynamics of flavonoids and carotenoids as antioxidants. Molecules, 17(2), 2140-2160. doi:10.3390/molecules17022140
CrossrefPubMedPMCGoogle Scholar

Havaux, M. (2013). Carotenoid oxidation products as stress signals in plants. The Plant Journal, 79(4), 597-606. doi:10.1111/tpj.12386
CrossrefPubMedGoogle Scholar

Hasanuzzaman, M., Bhuyan, M. H. M., Zulfiqar, F., Raza, A., Mohsin, S., Mahmud, J., Fujita, M., & Fotopoulos, V. (2020). Reactive oxygen species and antioxidant defense in plants under abiotic stress: revisiting the crucial role of a universal defense regulator. Antioxidants, 9(8), 681. doi:10.3390/antiox9080681
CrossrefPubMedPMCGoogle Scholar

Naing, A. H., & Kim, C. K. (2021). Abiotic stress-induced anthocyanins in plants: their role in tolerance to abiotic stresses. Physiologia Plantarum, 172(3), 1711-1723. doi:10.1111/ppl.13373
CrossrefPubMedGoogle Scholar

Khattab, R., Brooks, M. S.-L., & Ghanem, A. (2016). Phenolic analyses of haskap berries (Lonicera caerulea L.): spectrophotometry versus high performance liquid chromatography. International Journal of Food Properties, 19(8), 1708-1725. doi:10.1080/10942912.2015.1084316
CrossrefGoogle Scholar

Kim, S., Lee, E.-Y., Hillman, P. F., Ko, J., Yang, I., & Nam, S.-J. (2021). Chemical structure and biological activities of secondary metabolites from Salicornia europaea L. Molecules, 26(8), 2252. doi:10.3390/molecules26082252
CrossrefPubMedPMCGoogle Scholar

Kotova, E. E., & Kotov, A. H. (2014). Systematyzatsiia farmakopeinykh vymoh do metodiv kontroliu yakosti likarskoi roslynnoi syrovyny. Unifikovani spektrofotometrychni metodyky [Systematization pharmacopoeial requirements for methods of quality control of herbal drugs. Unified spectrophotometric methods]. Pharmacom, 4, 22-34. (In Ukrainian)
Google Scholar

Kulshrestha, S., Jibran, R., van Klink, J. W., Zhou, Y., Brummell, D. A., Albert, N. W., Schwinn, K. E., Chagné, D., Landi, M., Bowman, J. L., & Davies, K. M. (2022). Stress, senescence, and specialized metabolites in bryophytes. Journal of Experimental Botany, 73(13), 4396-4411. doi:10.1093/jxb/erac085
CrossrefPubMedPMCGoogle Scholar

Lavid, N., Schwartz, A., Yarden, O., & Tel-Or, E. (2001). The involvement of polyphenols and peroxidase activities in heavy-metal accumulation by epidermal glands of the waterlily (Nymphaeaceae). Planta, 212(3), 323-331. doi:10.1007/s004250000400
CrossrefPubMedGoogle Scholar

Li, Y., Kong, D., Fu, Y., Sussman, M. R., & Wu, H. (2020). The effect of developmental and environmental factors on secondary metabolites in medicinal plants. Plant Physiology and Biochemistry, 148, 80-89. doi:10.1016/j.plaphy.2020.01.006
CrossrefPubMedGoogle Scholar

Lobachevska, O. V., Kyyak, N. Ya., Baik, O. L., Khorkavtsiv, Ya. D., Sokhanchak, R. R., Karpinets, L. I., Boyko, I. V., Beshley, S. V., Rabyk, I. V., Shcherbachenko, O. I., & Kit, N. A. (2022). Stiikist ta adaptyvni strukturno-funktsionalni zminy mokhiv pid vplyvom abiotychnykh stresoriv v umovakh antropohenno transformovanoho seredovyshcha [Stability and adaptive structural and functional changes of mosses under the influence of abiotic stressors in conditions of anthropogenically transformed environment]. Lviv: Halych-pres. (In Ukrainian)
Google Scholar

Mehr, Z. S., Khajeh, H., Bahabadi, S. E., & Sabbagh, S. K. (2012). Changes on proline, phenolic compounds and activity of antioxidant enzymes in Anethum graveolens L. under salt stress. International Journal of Agronomy and Plant Production, 3, 710-715.
Google Scholar

Møller, K. H., Hansen, A. S., & Kjaergaard, H. G. (2015). Gas phase detection of the NH-P hydrogen bond and importance of secondary interactions. The Journal of Physical Chemistry A, 119(44), 10988-10998. doi:10.1021/acs.jpca.5b08358
CrossrefPubMedGoogle Scholar

Neill, S. O., Gould, K. S., Kilmartin, P. A., Mitchell, K. A., & Markham, K. R. (2002). Antioxidant activities of red versus green leaves in Elatostema rugosum. Plant, Cell & Environment, 25(4), 539-547. doi:10.1046/j.1365-3040.2002.00837.x
CrossrefGoogle Scholar

Nikolaychuk, V. I., Belchgazi, V. Y., & Bilyk, P. P. (2000). Spetspraktykum z fiziolohiyi i biokhimiyi roslyn [Special workshop on plant physiology and biochemistry]. Uzhgorod: VAT Patent. (In Ukrainian)
Google Scholar

Ortega-García, F., & Peragón, J. (2009). The response of phenylalanine ammonia-lyase, polyphenol oxidase and phenols to cold stress in the olive tree (Olea europaea L. cv. Picual). Journal of the Science of Food and Agriculture, 89(9), 1565-1573. doi:10.1002/jsfa.3625
CrossrefGoogle Scholar

Peck, S., & Mittler, R. (2020). Plant signaling in biotic and abiotic stress. Journal of Experimental Botany, 71(5), 1649-1651. doi:10.1093/jxb/eraa051
CrossrefPubMedGoogle Scholar

Pękal, A., & Pyrzynska, K. (2014). Evaluation of aluminium complexation reaction for flavonoid content assay. Food Analytical Methods, 7(9), 1776-1782. doi:10.1007/s12161-014-9814-x
CrossrefGoogle Scholar

Randhir, R., Lin, Y.-T., & Shetty, K. (2004). Stimulation of phenolics, antioxidant and antimicrobial activities in dark germinated mung bean sprouts in response to peptide and phytochemical elicitors. Process Biochemistry, 39(5), 637-646. doi:10.1016/s0032-9592(03)00197-3
CrossrefGoogle Scholar

Ren, X., Wang, M., Wang, Y., & Huang, A. (2020). Superoxide anion generation response to wound in Arabidopsis hypocotyl cutting. Plant Signaling & Behavior, 16(2), 1848086. doi:10.1080/15592324.2020.1848086
CrossrefPubMedPMCGoogle Scholar

Richter, H., Lieberei, R., & von Schwartzenberg, K. (2005). Identification and characterisation of a bryophyte polyphenol oxidase encoding gene from Physcomitrella patens. Plant Biology, 7(3), 283-291. doi:10.1055/s-2005-837598
CrossrefPubMedGoogle Scholar

Rivero, R. M., Ruiz, J. M., Garcı́a, P. C., López-Lefebre, L. R., Sánchez, E., & Romero, L. (2001). Resistance to cold and heat stress: accumulation of phenolic compounds in tomato and watermelon plants. Plant Science, 160(2), 315-321. doi:10.1016/s0168-9452(00)00395-2
CrossrefPubMedGoogle Scholar

Sharma, A., Shahzad, B., Rehman, A., Bhardwaj, R., Landi, M., & Zheng, B. (2019). Response of phenylpropanoid pathway and the role of polyphenols in plants under abiotic stress. Molecules, 24(13), 2452. doi:10.3390/molecules24132452
CrossrefPubMedPMCGoogle Scholar

Smolińska-Kondla, D., Zych, M., Ramos, P., Wacławek, S., & Stebel, A. (2022). Antioxidant potential of various extracts from 5 common European mosses and its correlation with phenolic compounds. Herba Polonica, 68(2), 54-68. doi:10.2478/hepo-2022-0014
CrossrefGoogle Scholar

Tahvanainen, T., & Haraguchi, A. (2013). Effect of pH on phenol oxidase activity on decaying Sphagnum mosses. European Journal of Soil Biology, 54, 41-47. doi:10.1016/j.ejsobi.2012.10.005
CrossrefGoogle Scholar

Taranto, F., Pasqualone, A., Mangini, G., Tripodi, P., Miazzi, M., Pavan, S., & Montemurro, C. (2017). Polyphenol oxidases in crops: biochemical, physiological and genetic aspects. International Journal of Molecular Sciences, 18(2), 377. doi:10.3390/ijms18020377
CrossrefPubMedPMCGoogle Scholar

Thakur, S., & Kapila, S. (2017). Seasonal changes in antioxidant enzymes, polyphenol oxidase enzyme, flavonoids and phenolic content in three leafy liverworts. Lindbergia, 5, 39-44. doi:10.25227/linbg.01076
CrossrefGoogle Scholar

Tilley, A., McHenry, M. P., McHenry, J. A., Solah, V., & Bayliss, K. (2023). Enzymatic browning: the role of substrates in polyphenol oxidase mediated browning. Current Research in Food Science, 7, 100623. doi:10.1016/j.crfs.2023.100623
CrossrefPubMedPMCGoogle Scholar

Uarrota, V. G., Stefen, D. L. V., Leolato, L. S., Gindri, D. M., & Nerling, D. (2018). Revisiting carotenoids and their role in plant stress responses: from biosynthesis to plant signaling mechanisms during stress. In: D. Gupta, J., Palma & F. Corpas. (Eds.), Antioxidants and antioxidant enzymes in higher plants (pp. 207-232). Springer, Cham. doi:10.1007/978-3-319-75088-0_10
CrossrefGoogle Scholar

Vaughn, K. C., Lax, A. R., & Duke, S. O. (1988). Polyphenol oxidase: the chloroplast oxidase with no established function. Physiologia Plantarum, 72(3), 659-665. doi:10.1111/j.1399-3054.1988.tb09180.x
CrossrefGoogle Scholar

Voitsekhivska, O. V., Kapustian, A. V., Kosyk, O. I., Musiienko, M. M., Olkhovych, O. P., Paniuta, O. O., Parshykova, T. V., & Slavnyi, P. S. (2010). Fiziolohiia roslyn: praktykum [Physiology of plants: workshop]. Lutsk: Teren. (In Ukrainian)
Google Scholar

Wadavkar, D. S., Murumkar, C. V., Deokule, S. S., & Chavan, S. J. (2017). Secondary metabolite and enzyme activity on some moss species from Western Ghats, Maharashtra, India. Bioscience Discovery, 8(4), 716-719.
Google Scholar

Wani, K. I., Naeem, M., Castroverde, C. D. M., Kalaji, H. M., Albaqami, M., & Aftab, T. (2021). Molecular mechanisms of nitric oxide (NO) signaling and reactive oxygen species (ROS) homeostasis during abiotic stresses in plants. International Journal of Molecular Sciences, 22(17), 9656. doi:10.3390/ijms22179656
CrossrefPubMedPMCGoogle Scholar

Winkel-Shirley, B. (2001). Flavonoid biosynthesis. A colorful model for genetics, biochemistry, cell biology, and biotechnology. Plant Physiology, 126(2), 485-493. doi:10.1104/pp.126.2.485
CrossrefPubMedPMCGoogle Scholar

Zhang, X., Zhao, Y., & Wang, S. (2017). Responses of antioxidant defense system of epilithic mosses to drought stress in karst rock desertified areas. Acta Geochimica, 36(2), 205-212. doi:10.1007/s11631-017-0140-z
CrossrefGoogle Scholar


Refbacks

  • There are currently no refbacks.


Copyright (c) 2025 Oksana Baik, Roman Sokhanchak, Vasyl Humenyuk

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.