LEAF PHENOTYPIC PLASTICITY OF FOUR ELEUTHEROCOCCUS SPECIES GROWING IN THE URBAN ENVIRONMENT
DOI: http://dx.doi.org/10.30970/sbi.1902.831
Abstract
Background. Urban greening initiatives can significantly mitigate the challenges of climate change and urbanization. One of the innovative urban greening approaches involves the utilization of diverse tree and shrub varieties for urban landscaping. Species of Eleutherococcus, due to their exotic habitus and shade tolerance, stand out as attractive ornamental plants. It was previously demonstrated that adaptation of plants to a new environment is associated with phenotypic plasticity. The study aimed to establish the level of phenotypic plasticity for four Eleutherococcus species (E. lasiogyne, E. senticosus, E. sessiliflorus, E. trifoliatus) in an urbanized environment of Kyiv (Ukraine).
Materials and Methods. The indexes of phenotypic plasticity (PI) were established based on seven morphological and ten anatomical features of leaves developed in sun and shade conditions. Anatomical measurements were carried out and analyzed by light microscopy (Zeiss Axiocam MRc 5 digital camera, Carl Zeiss) using Axiovision AC software. The phenotypic plasticity index was calculated for each parameter and species. Student’s t-test, one-Way ANOVA, Tukey’s HSD post hoc test, and Principal component analysis (PCA) were performed, including all considered leaf morphological and anatomical variables, grouped per species. All statistical analyses were performed using R version 3.5.3 (R Core Team).
Results. The leaf traits of four Eleutherococcus species generally correspond to those of deciduous mesophyte trees, with LMA (the leaf dry mass per unit leaf area) ranging from 31 to 47 g m-2. The species significantly differed from each other in the level of variability of morphological and anatomical parameters. Total PI rankings are as follows: E. senticosus (0.34) → E. lasiogyne (0,30) → E. sessiliflorus (0.22) → E. trifoliatus (0.20).
Conclusion. Our results contribute new insights into the phenotypic plasticity of trees and shrubs under new ecological and climatic conditions. Eleutherococcus senticosus exhibited the highest phenotypic plasticity among all investigated species, suggesting a high adaptive potential. The assessment of phenotypic plasticity can be useful for evaluating the adaptation potential of woody plants in urban greening.
Keywords
Full Text:
PDFReferences
| Adamczyk, K., Olech, M., Abramek, J., Pietrzak, W., Kuźniewski, R., Bogucka-Kocka, A., ... & Załuski, D. (2019). Eleutherococcus species cultivated in Europe: a new source of compounds with antiacetylcholinesterase, antihyaluronidase, anti-DPPH, and cytotoxic activities. Oxidative Medicine and Cellular Longevity, 2019(1), 8673521. doi: 10.1155/2019/8673521 Crossref ● PubMed ● PMC ● Google Scholar | ||||
| ||||
| Assessment report on Eleutherococcus senticosus (Rupr. et Maxim.) Maxim., radix. (2023) European Medicines Agency (EMA) Retrieved from https://www.ema.europa.eu | ||||
| ||||
| Chelli, S., Marignani, M., Barni, E., Petraglia, A., Puglielli, G., Wellstein, C., ... & Cerabolini, B. E. (2019). Plant-environment interactions through a functional traits perspective: a review of Italian studies. Plant Biosystems - An International Journal Dealing with all Aspects of Plant Biology, 153(6), 853-869. doi:10.1080/11263504.2018.1559250 Crossref ● Google Scholar | ||||
| ||||
| Döring, M., Imhof, S., Weber, H., & Ewald, D. (2003). Propagation by leaf cuttings of Eleutherococcus Max. (Araliaceae). Journal of Applied Botany and Food Quality, 77(3-4), 57-60. Google Scholar | ||||
| ||||
| Flora of China. (2024, June 17). Retrieved from http://www.efloras.org/flora_page.aspx?flora_id=2 | ||||
| ||||
| Gratani, L. (2014). Plant phenotypic plasticity in response to environmental factors. Advances in Botany, 2014, 1-17. doi:10.1155/2014/208747 Crossref ● Google Scholar | ||||
| ||||
| Huang, L., Zhao, H., Huang, B., Zheng, C., Peng, W., & Qin, L. (2011). Acanthopanax senticosus: review of botany, chemistry and pharmacology. ChemInform, 42(25). doi:10.1002/chin.201125219 Crossref ● Google Scholar | ||||
| ||||
| Johnson, M. T. J., & Munshi-South, J. (2017). Evolution of life in urban environments. Science, 358(6363), eaam8327. doi:10.1126/science.aam8327 Crossref ● PubMed ● Google Scholar | ||||
| ||||
| Kazmierczak, A., Bittner, S., Breil, M., Coninx, I., Johnson, K., Kleinenkuhnen, L., ... & Zandersen, M. (2020) Urban adaptation in Europe: how cities and towns respond to climate change (No 12/2020). Copenhagen: European Environment Agency (EEA). doi:10.2800/324620 Crossref ● Google Scholar | ||||
| ||||
| Li, T. S. C. (2001). Siberian ginseng. HortTechnology, 11(1), 79-85. doi:10.21273/horttech.11.1.79 Crossref ● Google Scholar | ||||
| ||||
| Li, X., Zhao, X., Tsujii, Y., Ma, Y., Zhang, R., Qian, C., Wang, Z., Geng, F., & Jin, S. (2022). Links between leaf anatomy and leaf mass per area of herbaceous species across slope aspects in an eastern Tibetan subalpine meadow. Ecology and Evolution, 12(6), e8973. doi:10.1002/ece3.8973 Crossref ● PubMed ● PMC ● Google Scholar | ||||
| ||||
| Morozko, A. P., Leshchenko, O. Y., Kolesnichenko, O. V., Lykholat, Y. V., Zemnianska, M., Bidolakh, D. I., & Tsarenko, O. N. (2018). Perculiarities of introduction of Araliaceae Juss. in botanical gardens (Kyiv, Ukraine). Ecology and Noospherology, 29(2), 63-70. doi:10.15421/031811 Crossref ● Google Scholar | ||||
| ||||
| Poorter, H., Niinemets, Ü., Poorter, L., Wright, I. J., & Villar, R. (2009). Causes and consequences of variation in leaf mass per area (LMA): a meta-analysis. New Phytologyst, 182(3), 565-588. doi:10.1111/j.1469-8137.2009.02830.x Crossref ● PubMed ● Google Scholar | ||||
| ||||
| Puglielli, G. (2024). Can we leverage botanical gardens to study global plant functional diversity? Diversity and Distributions, 30(12), e13915. doi:10.1111/ddi.13915 Crossref ● Google Scholar | ||||
| ||||
| POWO. (2022, July 12). Plants of the World Online. Facilitated by the Royal Botanic Gardens, Kew. Retrieved from http://www.plantsoftheworldonline.org | ||||
| ||||
| R Core Team. (2023). R: A language and environment for statistical computing_. R Foundation for Statistical Computing, Vienna, Austria. Retrieved from https://www.R-project.org | ||||
| ||||
| Rudall, P. J., Hilton, J., & Bateman, R. M. (2013). Several developmental and morphogenetic factors govern the evolution of stomatal patterning in land plants. New Phytologist, 200(3), 598-614. doi:10.1111/nph.12406 Crossref ● PubMed ● Google Scholar | ||||
| ||||
| Sack, L., Grubb, P. J., & Marañón, T. (2003). The functional morphology of juvenile plants tolerant of strong summer drought in shaded forest understories in southern Spain. Plant Ecology, 168(1), 139-163. doi:10.1023/a:1024423820136 Crossref ● Google Scholar | ||||
| ||||
| Stotz, G. C., Salgado-Luarte, C., Escobedo, V. M., Valladares, F., & Gianoli, E. (2021). Global trends in phenotypic plasticity of plants. Ecology Letters, 24(10), 2267-2281. doi:10.1111/ele.13827 Crossref ● PubMed ● Google Scholar | ||||
| ||||
| Valladares, F., Matesanz, S., Guilhaumon, F., Araújo, M. B., Balaguer, L., Benito-Garzón, M., ... & Zavala, M. A. (2014). The effects of phenotypic plasticity and local adaptation on forecasts of species range shifts under climate change. Ecology Letters, 17(11), 1351-1364. doi:10.1111/ele.12348 Crossref ● PubMed ● Google Scholar | ||||
| ||||
| Valladares, F., Wright, S. J., Lasso, E., Kitajima, K., & Pearcy, R. W. (2000). Plastic phenotypic response to light of 16 congeneric shrubs from a Panamanian rainforest. Ecology, 81(7), 1925-1936. doi:10.2307/177282 Crossref ● Google Scholar | ||||
| ||||
| Valladares, F., Gianoli, E., & Gómez, J. M. (2007). Ecological limits to plant phenotypic plasticity. New Phytologist, 176(4), 749-763. doi:10.1111/j.1469-8137.2007.02275.x Crossref ● PubMed ● Google Scholar | ||||
| ||||
| Vázquez, D. P., Gianoli, E., Morris, W. F., & Bozinovic, F. (2015). Ecological and evolutionary impacts of changing climatic variability. Biological Reviews, 92(1), 22-42. doi:10.1111/brv.12216 Crossref ● PubMed ● Google Scholar | ||||
| ||||
| Villar, R., Ruiz-Robleto, J., Ubera, J. L., & Poorter, H. (2013). Exploring variation in leaf mass per area (LMA) from leaf to cell: an anatomical analysis of 26 woody species. American Journal of Botany, 100(10), 1969-1980. doi:10.3732/ajb.1200562 Crossref ● PubMed ● Google Scholar | ||||
| ||||
| Wang, J., Gao, J., Wu, Y., Xu, B., Shi, F., Zhou, H., Bisht, N., & Wu, N. (2021). Effects of heterogeneous environment after deforestation on plant phenotypic plasticity of three shrubs based on leaf traits and biomass allocation. Frontiers in Ecology and Evolution, 9, 608663. doi:10.3389/fevo.2021.608663 Crossref ● Google Scholar | ||||
| ||||
| Wang, S., Bao, L., Wang, T., Wang, H., & Ge, J. (2016). Contrasting genetic patterns between two coexisting Eleutherococcus species in northern China. Ecology and Evolution, 6(10), 3311-3324. doi:10.1002/ece3.2118 Crossref ● PubMed ● PMC ● Google Scholar | ||||
| ||||
| WFO. (2022, January 12). World Flora Online. Retrieved from http://www.worldfloraonline.org | ||||
| ||||
| Wright, I. J., Reich, P. B., Westoby, M., Ackerly, D. D., Baruch, Z., Bongers, F., … & Villar, R. (2004). The worldwide leaf economics spectrum. Nature, 428(6985), 821-827. doi:10.1038/nature02403 Crossref ● PubMed ● Google Scholar | ||||
Refbacks
- There are currently no refbacks.
Copyright (c) 2025 Olena Vasheka, Viktoria Kryshenyk, Roman Palagecha, Nadiya Dzhurenko

This work is licensed under a Creative Commons Attribution 4.0 International License.
