GENOTYPIC PECULIARITIES OF WHEAT PHOTOSYNTHESIS LIGHT INDUCTION AND PRODUCTIVITY UNDER THE DROUGHT EFFECT

Dmytro Kiriziy, Volodymyr Morgun


DOI: http://dx.doi.org/10.30970/sbi.1804.799

Abstract


Background. In agrocenoses, leaf light conditions are known to be unstable due to intermittent cloud cover and shading by other leaves or spikes. However, with a change in irradiance, photosynthesis does not reach its final value instantly, but with a certain delay. Due to this photosynthetic efficiency of leaves and crops is generally lower compared to stationary conditions. At the same time, the vast majority of works devoted to the problems of photosynthetic apparatus functioning under unstable light conditions do not take into account an adverse impact on photosynthesis of such a common stressor as drought. The aim of the present work was to study the peculiarities of flag leaves CO2 and H2O gas exchange parameters with changes in illumination under conditions of optimal and insufficient water supply in order to explore the pattern of drought effect on the photosynthetic induction processes in connection with productivity of wheat plants of different genotypes.
Materials and Methods. The research was carried out on bread winter wheat varieties Yednist, Bohdana, Perlyna Podillia under conditions of pot experiment. Control plants were grown under an optimal soil moisture of 70 % field capacity (FC). In the experimental pots, soil drought was created at the level of 30 % FC for 7 days during the earing–flowering period, after that the soil moisture was restored to the optimal level. The parameters of flag leaf gas exchange were measured on the seventh day of drought. Components of plants grain productivity were determined after reaching full grain maturity.
Results. It was found that according to the parameters of light induction curves of CO2 assimilation and transpiration, wheat plants of different genotypes under drought conditions are differentiated more clearly than under normal water supply. An increase in the limiting role of stomata in the induction of photosynthesis under drought conditions and changes in illumination was shown. Drought disrupts the coherence of stomatal
conductance regulation in interaction with CO2 assimilation processes. This affects the light induction curves of photosynthesis and transpiration, and ultimately leads to a decrease in grain productivity.
Conclusions. It was shown that in order to assess the efficiency of the photosynthetic apparatus in providing wheat plants with assimilates and maintaining their grain productivity under unfavorable conditions, the parameters of the response to the changes in illumination must be taken into account.


Keywords


Triticum aestivum L., drought, photosynthesis, transpiration, light induction, productivity drought, photosynthesis, transpiration, light induction, productivity

Full Text:

PDF

References


Acevedo-Siaca, L. G., Coe, R., Quick, W. P., & Long, S. P. (2021). Variation between rice accessions in photosynthetic induction in flag leaves and underlying mechanisms. Journal of Experimental Botany, 72(4), 1282-1294. doi:10.1093/jxb/eraa520
CrossrefPubMedPMCGoogle Scholar

Amaral, J., Lobo, A. K. M., & Carmo-Silva, E. (2024). Regulation of Rubisco activity in crops. New Phytologist, 241(1), 35-51. doi:10.1111/nph.19369
CrossrefPubMedGoogle Scholar

Busch, F. A., Ainsworth, E. A., Amtmann, A., Cavanagh, A. P., Driever, S. M., Ferguson, J. N., Kromdijk, J., Lawson, T., Leakey, A. D. B., Matthews, J. S. A., Meacham-Hensold, K., Vath, R. L., Vialet-Chabrand, S., Walker, B. J., & Papanatsiou, M. (2024). A guide to photosynthetic gas exchange measurements: fundamental principles, best practice and potential pitfalls. Plant, Cell & Environment, 47(9), 3344-3364. doi:10.1111/pce.14815
CrossrefPubMedGoogle Scholar

Carmo-Silva, E., Andralojc, P. J., Scales, J. C., Driever, S. M., Mead, A., Lawson, T., Raines, C. A., & Parry, M. A. J. (2017). Phenotyping of field-grown wheat in the UK highlights contribution of light response of photosynthesis and flag leaf longevity to grain yield. Journal of Experimental Botany, 68(13), 3473-3486. doi:10.1093/jxb/erx169
CrossrefPubMedPMCGoogle Scholar

Deans, R. M., Farquhar, G. D., & Busch, F. A. (2019a). Estimating stomatal and biochemical limitations during photosynthetic induction. Plant, Cell & Environment, 42(12), 3227-3240. doi:10.1111/pce.13622
CrossrefPubMedGoogle Scholar

Deans, R. M., Brodribb, T. J., Busch, F. A., & Farquhar, G. D. (2019b). Plant water-use strategy mediates stomatal effects on the light induction of photosynthesis. New Phytologist, 222(1), 382-395. doi:10.1111/nph.15572
CrossrefPubMedGoogle Scholar

Ehonen, S., Yarmolinsky, D., Kollist, H., & Kangasjärvi, J. (2019). Reactive oxygen species, photosynthesis, and environment in the regulation of stomata. Antioxidants & Redox Signaling, 30(9), 1220-1237. doi:10.1089/ars.2017.7455
CrossrefPubMedGoogle Scholar

Endres, L., Silva, J. V., Ferreira, V. M., & De Souza Barbosa, G. V. (2010). Photosynthesis and water relations in brazilian sugarcane. The Open Agriculture Journal, 4(1), 31-37. doi:10.2174/1874331501004010031
CrossrefGoogle Scholar

Eyland, D., van Wesemael, J., Lawson, T., & Carpentier, S. (2021). The impact of slow stomatal kinetics on photosynthesis and water use efficiency under fluctuating light. Plant Physiology, 186(2), 998-1012. doi:10.1093/plphys/kiab114
CrossrefPubMedPMCGoogle Scholar

Faralli, M., Cockram, J., Ober, E., Wall, S., Galle, A., Van Rie, J., Raines, C., & Lawson, T. (2019a). Genotypic, developmental and environmental effects on the rapidity of gs in wheat: impacts on carbon gain and water-use efficiency. Frontiers in Plant Science, 10, 492. doi:10.3389/fpls.2019.00492
CrossrefPubMedPMCGoogle Scholar

Faralli, M., Matthews, J., & Lawson, T. (2019b). Exploiting natural variation and genetic manipulation of stomatal conductance for crop improvement. Current Opinion in Plant Biology, 49, 1-7. doi:10.1016/j.pbi.2019.01.003
CrossrefPubMedPMCGoogle Scholar

Kaiser, E., Morales, A., & Harbinson, J. (2018). Fluctuating light takes crop photosynthesis on a rollercoaster ride. Plant Physiology, 176(2), 977-989. doi:10.1104/pp.17.01250
CrossrefPubMedPMCGoogle Scholar

Lawson, T., & Vialet-Chabrand, S. (2019). Speedy stomata, photosynthesis and plant water use efficiency. New Phytologist, 221(1), 93-98. doi:10.1111/nph.15330
CrossrefPubMedGoogle Scholar

Long, S. P., Marshall-Colon, A., & Zhu, X. G. (2015). Meeting the global food demand of the future by engineering crop photosynthesis and yield potential. Cell, 161(1), 56-66. doi:10.1016/j.cell.2015.03.019
CrossrefPubMedGoogle Scholar

Long, S. P., Taylor, S. H., Burgess, S. J., Carmo-Silva, E., Lawson, T., De Souza, A. P., Leonelli, L., & Wang, Y. (2022). Into the shadows and back into sunlight: photosynthesis in fluctuating light. Annual Review of Plant Biology, 73(1), 617-648. doi:10.1146/annurev-arplant-070221-024745
CrossrefPubMedGoogle Scholar

Lopez, M. A., Xavier, A., & Rainey, K. M. (2019). Phenotypic variation and genetic architecture for photosynthesis and water use efficiency in soybean (Glycine max L. Merr). Frontiers in Plant Science, 10, 680. doi:10.3389/fpls.2019.00680
CrossrefPubMedPMCGoogle Scholar

Morgun, V. V., Stasik, O. O., Kiriziy, D. A., & Sokolovska-Sergiienko, O. G. (2019a). Effect of drought on photosynthetic apparatus, activity of antioxidant enzymes, and productivity of modern winter wheat varieties. Regulatory Mechanisms in Biosystems, 10(1), 12-21. doi:10.15421/021903
CrossrefGoogle Scholar

Morgun, V. V., Stasik, O. O., Kiriziy, D. A., Sokolovska-Sergiienko, O. G., & Makharynska, N. M. (2019b). Effects of drought at different periods of wheat development on the leaf photosynthetic apparatus and productivity. Regulatory Mechanisms in Biosystems, 10(4), 406-414. doi:10.15421/021961
CrossrefGoogle Scholar

Murchie, E. H., Reynolds, M., Slafer, G. A., Foulkes, M. J., Acevedo-Siaca, L., McAusland, L., Sharwood, R., Griffiths, S., Flavell, R. B., Gwyn, J., Sawkins, M., & Carmo-Silva, E. A. (2023). A 'wiring diagram' for source strength traits impacting wheat yield potential. Journal of Experimental Botany, 74(1), 72-90, doi:10.1093/jxb/erac415
CrossrefPubMedPMCGoogle Scholar

Nunes, T. D. G., Zhang, D., & Raissig, M. T. (2020). Form, development and function of grass stomata. The Plant Journal, 101(4), 780-799. doi:10.1111/tpj.14552
CrossrefPubMedGoogle Scholar

Sakoda, K., Yamori, W., Groszmann, M., & Evans, J. R. (2021). Stomatal, mesophyll conductance, and biochemical limitations to photosynthesis during induction. Plant Physiology, 185(1), 146-160. doi:10.1093/plphys/kiaa011
CrossrefPubMedPMCGoogle Scholar

Salter, W. T., Merchant, A. M., Richards, R. A., Trethowan, R., & Buckley, T. N. (2019). Rate of photosynthetic induction in fluctuating light varies widely among genotypes of wheat. Journal of Experimental Botany, 70(10), 2787-2796. doi:10.1093/jxb/erz100
CrossrefPubMedPMCGoogle Scholar

Tanaka, Y., Adachi, S., & Yamori, W. (2019). Natural genetic variation of the photosynthetic induction response to fluctuating light environment. Current Opinion in Plant Biology, 49, 52-59. doi:10.1016/j.pbi.2019.04.010
CrossrefPubMedGoogle Scholar

Taylor, S. H., Gonzalez-Escobar, E., Page, R., Parry, M. A. J., Long, S. P., & Carmo-Silva, E. (2022). Faster than expected Rubisco deactivation in shade reduces cowpea photosynthetic potential in variable light conditions. Nature Plants, 8, 118-124. doi:10.1038/s41477-021-01068-9
CrossrefPubMedPMCGoogle Scholar

Taylor, S. H., Orr, D. J., Carmo-Silva, E., & Long, S. P. (2020). During photosynthetic induction, biochemical and stomatal limitations differ between Brassica crops. Plant, Cell & Environment, 43(11), 2623-2636. doi:10.1111/pce.13862
CrossrefPubMedGoogle Scholar

Taylor, S. H., & Long, S. P. (2017). Slow induction of photosynthesis on shade to sun transitions in wheat may cost at least 21% of productivity. Philosophical Transactions of the Royal Society B, Biological Sciences, 372(1730), 20160543. doi:10.1098/rstb.2016.0543
CrossrefPubMedPMCGoogle Scholar

Urban, L., Aarrouf, J., & Bidel, L. P. R. (2017). Assessing the effects of water deficit on photosynthesis using parameters derived from measurements of leaf gas exchange and of chlorophyll a fluorescence. Frontiers in Plant Science, 8, 2068. doi:10.3389/fpls.2017.02068
CrossrefPubMedPMCGoogle Scholar

Wang, Y., Burgess, S. J., de Becker, E. M., & Long, S. P. (2020). Photosynthesis in the fleeting shadows: an overlooked opportunity for increasing crop productivity? The Plant Journal, 101(4), 874-884. doi:10.1111/tpj.14663
CrossrefPubMedPMCGoogle Scholar

Yamori, W., Kusumi, K., Iba, K. & Terashima, I. (2020). Increased stomatal conductance induces rapid changes to photosynthetic rate in response to naturally fluctuating light conditions in rice. Plant Cell and Environment, 43(5), 1230-1240. doi:10.1111/pce.13725
CrossrefPubMedGoogle Scholar

Zahra, N., Hafeez, M. B., Kausar, A., Al Zeidi, M., Asekova, S., Siddique, K. H., & Farooq, M. (2023). Plant photosynthetic responses under drought stress: effects and management. Journal of Agronomy and Crop Science, 209(5), 651-672. doi:10.1111/jac.12652
CrossrefGoogle Scholar

Zhang, J., Chen, X., Song, Y., & Gong, Z. (2024). Integrative regulatory mechanisms of stomatal movements under changing climate. Journal of Integrative Plant Biology, 66(3), 368-393. doi:10.1111/jipb.13611
CrossrefPubMedGoogle Scholar

Zhang, Q., Peng, S., & Li, Y. (2019). Increase rate of light-induced stomatal conductance is related to stomatal size in the genus Oryza. Journal of Experimental Botany, 70(19), 5259-5269. doi:10.1093/jxb/erz267
CrossrefPubMedPMCGoogle Scholar


Refbacks

  • There are currently no refbacks.


Copyright (c) 2024 Dmytro Kiriziy, Volodymyr Morgun

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.