BLACKTHORN (PRUNUS SPINOSA L.): ECOLOGICAL FEATURES OF PROMISING FORMS AND THE VALUE OF THE NUTRIENT COMPOSITION OF THEIR FRUITS FOR THE PRODUCTION OF FUNCTIONAL PRODUCTS
DOI: http://dx.doi.org/10.30970/sbi.1804.793
Abstract
Background.The relevance of the research is determined by a constant striving to increase the possibilities of using rare fruit and berry crops, e.g. blackthorn, in plant breeding and the production of healthy food products. It can be achieved by scientifically based selection and evaluation of fruit taking into account their physiological, phytopathological and biochemical parameters. The purpose of the research is to expand the morphological diversity of blackthorn that combines high productivity and quality for further breeding.
Materials and Methods. Morphological characteristics and biological properties of the new forms of blackthorn as well as their biochemical parameters constitute the material for this research. A plethora of methods was applied: field, phenological, biometric, physiological and statistical ones.
Results. The study presents original data on the morphology and economic characteristics of various blackthorn forms (Prunus spinosa L.) obtained as a result of selection in semiarid lands of the northern, central and western parts of Ukraine. The paper highlights morphological and biological properties of the selected forms of blackthorn, biochemical parameters of fruits, including the content of polyphenolic substances as a source of antioxidants. The study revealed that the selected forms of blackthorn have high drought resistance and winter hardiness, in addition to resistance to low temperatures during the flowering phase. Phenological observations of plants of different forms of Prunus spinosa L. allowed establishing the time of onset of the ontogenesis phases: the development of vegetative and generative buds, budding and flowering, appearance of leaves, intensity of shoot growth, formation and development of ovaries, and fruit ripening, which is a significant scientific achievement for the prospective selection in the fruit gardening system.
The forms of blackthorn were differentiated by plant height, growth strength, thorniness, fruit size and weight and their potential use in the processing and manufacturing of functional foods. Biochemical analysis of the fruits, particularly the determination of polyphenols, allowed ascertaining their suitability for processing and manufacturing of healthy food products.
Conclusions. The obtained data on selected new forms of blackthorn is a potential source of material for prospective breeding. Moreover, technologies for the production of blended juices and syrups from the fruits of the best samples of blackthorn were developed regarding their biochemical properties and technological indicators.
Keywords
Full Text:
PDFReferences
| Albertini, M. C., Fraternale, D., Semprucci, F., Cecchini, S., Colomba, M., Rocchi, M. B. L., Sisti, D., Di Giacomo, B., Mari, M., Sabatini, L., Cesaroni, L., Balsamo, M., & Guidi, L. (2019). Bioeffects of Prunus spinosa L. fruit ethanol extract on reproduction and phenotypic plasticity of Trichoplax adhaerens Schulze, 1883 (Placozoa). PeerJ, 7, e6789. doi:10.7717/peerj.6789 Crossref ● PubMed ● PMC ● Google Scholar | ||||
| ||||
| Angulo-López, J. E., Flores-Gallegos, A. C., Ascacio-Valdes, J. A., Contreras Esquivel, J. C., Torres-León, C., Rúelas-Chácon, X., & Aguilar, C. N. (2022). Antioxidant dietary fiber sourced from agroindustrial byproducts and its applications. Foods, 12(1), 159. doi:10.3390/foods12010159 Crossref ● PubMed ● PMC ● Google Scholar | ||||
| ||||
| Araújo-Rodrigues, H., Santos, D., Campos, D. A., Ratinho, M., Rodrigues, I. M., & Pintado, M. E. (2021). Development of frozen pulps and powders from carrot and tomato by-products: impact of processing and storage time on bioactive and biological properties. Horticulturae, 7(7), 185. doi:10.3390/horticulturae7070185 Crossref ● Google Scholar | ||||
| ||||
| Backes, E., Leichtweis, M. G., Pereira, C., Carocho, M., Barreira, J. C. M., Kamal Genena, A., José Baraldi, I., Filomena Barreiro, M., Barros, L., & C.F.R. Ferreira, I. (2020). Ficus carica L. and Prunus spinosa L. extracts as new anthocyanin-based food colorants: a thorough study in confectionery products. Food Chemistry, 333, 127457. doi:10.1016/j.foodchem.2020.127457 Crossref ● PubMed ● Google Scholar | ||||
| ||||
| Balta, I., Sevastre, B., Mireşan, V., Taulescu, M., Raducu, C., Longodor, A. L., Marchiş, Z., Mariş, C. S., & Coroian, A. (2019). Protective effect of blackthorn fruits (Prunus spinosa) against tartrazine toxicity development in albino Wistar rats. BMC Chemistry, 13(1), 104. doi:10.1186/s13065-019-0610-y Crossref ● PubMed ● PMC ● Google Scholar | ||||
| ||||
| Baltas, N., Pakyildiz, S., Can, Z., Dincer, B., & Kolayli, S. (2017). Biochemical properties of partially purified polyphenol oxidase and phenolic compounds of Prunus spinosa L. subsp. dasyphylla as measured by HPLC-UV. International Journal of Food Properties, 20(2), 1377-1391. doi:10.1080/10942912.2017.1343349 Crossref ● Google Scholar | ||||
| ||||
| Beed, F., Taguchi, M., Telemans, B., Kahane, R., Le Bellec, F., Sourisseau, J. M., Malézieux, E., Magalie, L.-J., Deberdt, P., Deguine, J.-P., Faye, E., & Ramsay, G. (2021). Fruit and vegetables. Opportunities and challenges for small-scale sustainable farming. Italy, Rome: FAO-CIRAD. doi:10.4060/cb4173en Crossref ● Google Scholar | ||||
| ||||
| Brown, J. A., Montgomery, W. I., & Provan, J. (2022). Strong spatial structuring of clonal genetic diversity within blackthorn (Prunus spinosa) hedgerows and woodlands. Tree Genetics & Genomes, 18(1). doi:10.1007/s11295-022-01538-x Crossref ● Google Scholar | ||||
| ||||
| Brumfield, R. (2020). Ultra-niche crops series: beach plum enterprise budget. Budgeting and financial management publications. Rutgers. Retrieved from https://njaes.rutgers.edu/fs1314 | ||||
| ||||
| Campos, F., Peixoto, A. F., Fernandes, P. A. R., Coimbra, M. A., Mateus, N., de Freitas, V., Fernandes, I., & Fernandes, A. (2021). The antidiabetic effect of grape pomace polysaccharide-polyphenol complexes. Nutrients, 13(12), 4495. doi:10.3390/nu13124495 Crossref ● PubMed ● PMC ● Google Scholar | ||||
| ||||
| Capek, P., & Delort, A.-M. (2023). Polysaccharides extracted with hot water from wild Prunus spinosa L. berries. Carbohydrate Research, 529, 108852. doi:10.1016/j.carres.2023.108852 Crossref ● PubMed ● Google Scholar | ||||
| ||||
| Condello, M., Pellegrini, E., Spugnini, E. P., Baldi, A., Amadio, B., Vincenzi, B., Occhionero, G., Delfine, S., Mastrodonato, F., & Meschini, S. (2019). Anticancer activity of "Trigno M", extract of Prunus spinosa drupes, against in vitro 3D and in vivo colon cancer models. Biomedicine & Pharmacotherapy, 118, 109281. doi:10.1016/j.biopha.2019.109281 Crossref ● PubMed ● Google Scholar | ||||
| ||||
| Coppari, S., Colomba, M., Fraternale, D., Brinkmann, V., Romeo, M., Rocchi, M. B. L., Di Giacomo, B., Mari, M., Guidi, L., Ramakrishna, S., Ventura, N., & Albertini, M. C. (2021). Antioxidant and anti-inflammaging ability of prune (Prunus spinosa L.) extract result in improved wound healing efficacy. Antioxidants, 10(3), 374. doi:10.3390/antiox10030374 Crossref ● PubMed ● PMC ● Google Scholar | ||||
| ||||
| Cosmulescu, S. N., & Calusaru, F. G. (2018). Morphologic characteristics variability in Prunus spinosa L. shrubs identified in southern area of Oltenia, Romania. Notulae Scientia Biologicae, 10(3), 447-451. doi:10.15835/nsb10310364 Crossref ● Google Scholar | ||||
| ||||
| de Araújo, F. F., de Paulo Farias, D., Neri-Numa, I. A., & Pastore, G. M. (2021). Polyphenols and their applications: an approach in food chemistry and innovation potential. Food Chemistry, 338, 127535. doi:10.1016/j.foodchem.2020.127535 Crossref ● PubMed ● Google Scholar | ||||
| ||||
| De Luca, M., Tuberoso, C. I. G., Pons, R., García, M. T., Morán, M. del C., Ferino, G., Vassallo, A., Martelli, G., & Caddeo, C. (2023). Phenolic fingerprint, bioactivity and nanoformulation of Prunus spinosa L. fruit extract for skin delivery. Pharmaceutics, 15(4), 1063. doi:10.3390/pharmaceutics15041063 Crossref ● PubMed ● PMC ● Google Scholar | ||||
| ||||
| Dias, R., Pereira, C. B., Pérez-Gregorio, R., Mateus, N., & Freitas, V. (2021). Recent advances on dietary polyphenol's potential roles in Celiac Disease. Trends in Food Science & Technology, 107, 213-225. doi:10.1016/j.tifs.2020.10.033 Crossref ● Google Scholar | ||||
| ||||
| Farag, S., Tsang, C., & Murphy, P. N. (2023). Polyphenol supplementation and executive functioning in overweight and obese adults at risk of cognitive impairment: a systematic review and meta-analysis. PLoS One, 18(5), e0286143. doi:10.1371/journal.pone.0286143 Crossref ● PubMed ● PMC ● Google Scholar | ||||
| ||||
| Farrag, A., Mohammed E, T., Mohamed El, M., Nour Solim, T., & Mohamed Fa, H. (2018). Microencapsulation of grape phenolic compounds using whey proteins as a carrier vehicle. Journal of Biological Sciences, 18(7), 373-380. doi:10.3923/jbs.2018.373.380 Crossref ● Google Scholar | ||||
| ||||
| Fernandes, A., Mateus, N., & de Freitas, V. (2023). Polyphenol-dietary fiber conjugates from fruits and vegetables: nature and biological fate in a food and nutrition perspective. Foods, 12(5), 1052. doi:10.3390/foods12051052 Crossref ● PubMed ● PMC ● Google Scholar | ||||
| ||||
| Food Spotlight. (2021, June 14). Blackthorn: the original sloe food. By fine dining lovers. Retrieved from https://www.finedininglovers.com/article/blackthorn-sloe-berry-fruit | ||||
| ||||
| Guo, Q., Xiao, X., Lu, L., Ai, L., Xu, M., Liu, Y., & Goff, H. D. (2022). Polyphenol-polysaccharide complex: preparation, characterization, and potential utilization in food and health. Annual Review of Food Science and Technology, 13(1), 59-87. doi:10.1146/annurev-food-052720-010354 Crossref ● PubMed ● Google Scholar | ||||
| ||||
| Iglesias-Carres, L., Mas-Capdevila, A., Bravo, F. I., Aragonès, G., Muguerza, B., & Arola-Arnal, A. (2019a). Optimization of a polyphenol extraction method for sweet orange pulp (Citrus sinensis L.) to identify phenolic compounds consumed from sweet oranges. PLoS One, 14(1), e0211267. doi:10.1371/journal.pone.0211267 Crossref ● PubMed ● PMC ● Google Scholar | ||||
| ||||
| Iglesias-Carres, L., Mas-Capdevila, A., Bravo, F. I., Mulero, M., Muguerza, B., & Arola-Arnal, A. (2019b). Optimization and characterization of Royal Dawn cherry (Prunus avium) phenolics extraction. Scientific Reports, 9(1), 17626. doi:10.1038/s41598-019-54134-w Crossref ● PubMed ● PMC ● Google Scholar | ||||
| ||||
| Janceva, S., Andersone, A., Lauberte, L., Bikovens, O., Nikolajeva, V., Jashina, L., Zaharova, N., Telysheva, G., Senkovs, M., Rieksts, G., Ramata-Stunda, A., & Krasilnikova, J. (2022). Sea buckthorn (Hippophae rhamnoides) waste biomass after harvesting as a source of valuable biologically active compounds with nutraceutical and antibacterial potential. Plants, 11(5), 642. doi:10.3390/plants11050642 Crossref ● PubMed ● PMC ● Google Scholar | ||||
| ||||
| Koch, W. (2019). Dietary polyphenols-important non-nutrients in the prevention of chronic noncommunicable diseases. A systematic review. Nutrients, 11(5), 1039. doi:10.3390/nu11051039 Crossref ● PubMed ● PMC ● Google Scholar | ||||
| ||||
| Le Bourvellec, C., Bagano Vilas Boas, P., Lepercq, P., Comtet-Marre, S., Auffret, P., Ruiz, P., Bott, R., Renard, C. M. G. C., Dufour, C., Chatel, J.-M., & Mosoni, P. (2019). Procyanidin - cell wall interactions within apple matrices decrease the metabolization of procyanidins by the human gut microbiota and the anti-inflammatory effect of the resulting microbial metabolome in vitro. Nutrients, 11(3), 664. doi:10.3390/nu11030664 Crossref ● PubMed ● PMC ● Google Scholar | ||||
| ||||
| Lee, L. (2022, November 22). Drink in history: sloe gin fizz. Retrieved from https://chilledmagazine.com/drink-in-history-sloe-gin-fizz | ||||
| ||||
| Liu, W., Nan, G., Nisar, M. F., & Wan, C. (2020). Chemical constituents and health benefits of four Chinese plum species. Journal of Food Quality, 2020, 1-17. doi:10.1155/2020/8842506 Crossref ● Google Scholar | ||||
| ||||
| Lytovchenko, O. M., Grynyk, I. V., Moskalets, T. Z., Moskalets, V. V., Kuznetsov, A. V., Klymenko, S. V., & Vovkogon, A. G. (2022). Scientific methodical and practical innovations of the Institute of Horticulture NAAS of Ukraine on making healthy nutritional products from the fruits of viburnum, dewberry, dogwood and wild plum tree. Horticulture: Interdepartment Subject Scientific Collection, 77, 146-162. doi:10.35205/0558-1125-2022-77-146-162 (In Ukrainian) Crossref | ||||
| ||||
| Magiera, A., Czerwińska, M. E., Owczarek, A., Marchelak, A., Granica, S., & Olszewska, M. A. (2022). Polyphenol-enriched extracts of Prunus spinosa fruits: anti-inflammatory and antioxidant effects in human immune cells ex vivo in relation to phytochemical profile. Molecules, 27(5), 1691. doi:10.3390/molecules27051691 Crossref ● PubMed ● PMC ● Google Scholar | ||||
| ||||
| Marčetić, M., Samardžić, S., Ilić, T., Božić, D. D., & Vidović, B. (2022). Phenolic composition, antioxidant, anti-enzymatic, antimicrobial and prebiotic properties of Prunus spinosa L. fruits. Foods, 11(20), 3289. doi:10.3390/foods11203289 Crossref ● PubMed ● PMC ● Google Scholar | ||||
| ||||
| McDaniel, D. (2022, December 19). Sloe gin - a marriage of prunus and juniperus. By the herb society of America. Retrieved from https://herbsocietyblog.wordpress.com/2022/12/19/sloe-gin-a-marriage-of-prunus-and-juniperus | ||||
| ||||
| Mechchate, H., Es-safi, I., Haddad, H., Bekkari, H., Grafov, A., & Bousta, D. (2021). Combination of Catechin, Epicatechin, and Rutin: optimization of a novel complete antidiabetic formulation using a mixture design approach. The Journal of Nutritional Biochemistry, 88, 108520. doi:10.1016/j.jnutbio.2020.108520 Crossref ● PubMed ● Google Scholar | ||||
| ||||
| Ministry of Agrarian Policy and Food of Ukraine. (2022). Metodyka provedennia ekspertyzy sortiv roslyn hrupy plodovykh, yahidnykh, horikhoplidnykh ta vynohradu na vidminnist , odnoridnist i stabilnist [Methodology for examination of varieties of fruit, berry, nut and grape plant varieties for distinction, homogeneity and stability]. Kyiv. Retrieved from https://sops.gov.ua/uploads/page/metodiki/2022-05-13.pdf (In Ukrainian) | ||||
| ||||
| Migicovsky, Z., Amyotte, B., Ulrich, J., Smith, T. W., Turner, N. J., Pico, J., Ciotir, C., Sharifi, M., Meldrum, G., Stormes, B., & Moreau, T. (2022). Berries as a case study for crop wild relative conservation, use, and public engagement in Canada. Plants, People, Planet, 4(6), 558-578. doi:10.1002/ppp3.10291 Crossref ● Google Scholar | ||||
| ||||
| Moskalets, V., Moskalets, T., Shevchuk, L., Frantsishko, V., Barat, Y., & Krasovsky, V. (2022). Genetic resource of the Blackthorn or sloe (Prunus spinosa L.) with valuable economic signs for breeding on yield and quality. Agriculture and Forestry, 1(24), 76-95. doi. 10.37128/2707-5826-2022-1-6 (In Ukrainian) Crossref | ||||
| ||||
| Negrean, O.-R., Farcas, A. C., Pop, O. L., & Socaci, S. A. (2023). Blackthorn - a valuable source of phenolic antioxidants with potential health benefits. Molecules, 28(8), 3456. doi:10.3390/molecules28083456 Crossref ● PubMed ● PMC ● Google Scholar | ||||
| ||||
| Olesińska, K., Wilczyński, K., & Kałwa, K. (2018). The effect method of preservation on selected bioactive compounds and antioxidant activity in blackthorn fruits (Prunus spinosa L.). Agronomy Science, 73(3), 45-54. doi:10.24326/asx.2018.3.5 Crossref ● Google Scholar | ||||
| ||||
| Pawlaczyk-Graja, I. (2018). Polyphenolic-polysaccharide conjugates from flowers and fruits of single-seeded hawthorn (Crataegus monogyna Jacq.): chemical profiles and mechanisms of anticoagulant activity. International Journal of Biological Macromolecules, 116, 869-879. doi:10.1016/j.ijbiomac.2018.05.101 Crossref ● PubMed ● Google Scholar | ||||
| ||||
| Polka, D., Podsędek, A., & Koziołkiewicz, M. (2019). Comparison of chemical composition and antioxidant capacity of fruit, flower and bark of Viburnum opulus. Plant Foods for Human Nutrition, 74(3), 436-442. doi:10.1007/s11130-019-00759-1 Crossref ● PubMed ● PMC ● Google Scholar | ||||
| ||||
| Ribeiro, T. B., Costa, C. M., Bonifácio-Lopes, T., Silva, S., Veiga, M., Monforte, A. R., Nunes, J., Vicente, A. A., & Pintado, M. (2021). Prebiotic effects of olive pomace powders in the gut: in vitro evaluation of the inhibition of adhesion of pathogens, prebiotic and antioxidant effects. Food Hydrocolloids, 112, 106312. doi:10.1016/j.foodhyd.2020.106312 Crossref ● Google Scholar | ||||
| ||||
| Sabatini, L., Fraternale, D., Di Giacomo, B., Mari, M., Albertini, M. C., Gordillo, B., Rocchi, M. B. L., Sisti, D., Coppari, S., Semprucci, F., Guidi, L., & Colomba, M. (2020). Chemical composition, antioxidant, antimicrobial and anti-inflammatory activity of Prunus spinosa L. fruit ethanol extract. Journal of Functional Foods, 67, 103885. doi:10.1016/j.jff.2020.103885 Crossref ● Google Scholar | ||||
| ||||
| Santos, D., Lopes da Silva, J. A., & Pintado, M. (2022). Fruit and vegetable by-products' flours as ingredients: a review on production process, health benefits and technological functionalities. LWT, 154, 112707. doi:10.1016/j.lwt.2021.112707 Crossref ● Google Scholar | ||||
| ||||
| Seniuk, I. V., & Sahlanee, B. J. A. (2019). Study of the anti-exudative activity of dry extract from Prunus domestica fruits. Ukrainian Biopharmaceutical Journal, 2(59), 55-59. doi:10.24959/ubphj.19.220 (In Ukrainian) Crossref ● Google Scholar | ||||
| ||||
| Sönmez, M., Cömert Önder, F. C., Tokay, E., Celık, A., Köçkar, F., & Ay, M. (2021). Investigation of antioxidant, enzyme inhibition and antiproliferative activities of blackthorn (Prunus spinosa L.) extracts. International Journal of Life Sciences and Biotechnology, 4(3), 360-380. doi:10.38001/ijlsb.851220 Crossref ● Google Scholar | ||||
| ||||
| Tagliani, C., Perez, C., Curutchet, A., Arcia, P., & Cozzano, S. (2019). Blueberry pomace, valorization of an industry by-product source of fibre with antioxidant capacity. Food Science and Technology, 39(3), 644-651. doi:10.1590/fst.00318 Crossref ● Google Scholar | ||||
| ||||
| Takım, K. (2021). Bioactive component analysis and investigation of antidiabetic effect of Jerusalem thorn (Paliurus spina-christi) fruits in diabetic rats induced by streptozotocin. Journal of Ethnopharmacology, 264, 113263. doi:10.1016/j.jep.2020.113263 Crossref ● PubMed ● Google Scholar | ||||
| ||||
| Tarko, T., & Duda-Chodak, A. (2020). Influence of food matrix on the bioaccessibility of fruit polyphenolic compounds. Journal of Agricultural and Food Chemistry, 68(5), 1315-1325. doi:10.1021/acs.jafc.9b07680 Crossref ● PubMed ● Google Scholar | ||||
| ||||
| Wang, M., Zhang, Z., Sun, H., He, S., Liu, S., Zhang, T., Wang, L., & Ma, G. (2022). Research progress of anthocyanin prebiotic activity: a review. Phytomedicine, 102, 154145. doi:10.1016/j.phymed.2022.154145 Crossref ● PubMed ● Google Scholar | ||||
| ||||
| Yahfoufi, N., Alsadi, N., Jambi, M., & Matar, C. (2018). The immunomodulatory and anti-inflammatory role of polyphenols. Nutrients, 10(11), 1618. doi:10.3390/nu10111618 Crossref ● PubMed ● PMC ● Google Scholar | ||||
| ||||
| Zhang, Y., Li, Y., Ren, X., Zhang, X., Wu, Z., & Liu, L. (2023). The positive correlation of antioxidant activity and prebiotic effect about oat phenolic compounds. Food Chemistry, 402, 134231. doi:10.1016/j.foodchem.2022.134231 Crossref ● PubMed ● Google Scholar | ||||
Refbacks
- There are currently no refbacks.
Copyright (c) 2024 Valentyn Moskalets, Bohdan Hulko, Svitlana Matkovska, Oleg Knyazyuk, Stepan Polyvanyi

This work is licensed under a Creative Commons Attribution 4.0 International License.
