A COMPARISON BETWEEN THREE METHODS OF
ORDER SIX USING SIMILAR INFORMATION
Анотація
This study provides a comparative analysis of three sixth-order iterative methods for solving nonlinear equations. Unlike many existing approaches that rely on higher-order derivatives, this work develops an optimized local convergence analysis based on the operator F and its derivative F′. More significantly, introduce a semi-local convergence analysis for these methods using majorizing sequences, which provides a practical framework
for establishing convergence based on the conditions at the initial guess. Both local and semi-local convergence analysis are performed within the context of Banach spaces. This approach enhances the theoretical robustness and practical applicability of the methods. To validate the theoretical findings, a series of numerical experiments is conducted on various standard benchmark problems, including small- to large-scale nonlinear systems. The performance of the methods is compared against the classical Newton’s method. The findings confirm that the sixth-order methods consistently outperform Newton’s method in terms of the total number of iterations. We analyze the Computational Order of Convergence (COC) and Approximate Computational Order of Convergence (ACOC), which empirically confirm the high convergence order of the proposed methods. Furthermore, we investigate the numerical stability and performance under high-precision requirements, utilizing arbitrary-precision arithmetic to solve problems where standard double precision fails. These results underscore the practical advantages and theoretical robustness of the methods. The methodology presented can be applied to other similar iterative methods.
Повний текст:
PDF (English)Посилання
1. Sharma J. An improved Newton–Traub composition for solving systems of nonlinear equations / J. R. Sharma, R. Sharma, and A. Bahl // Applied Mathematics and Computation. – 2016. – Vol. 290. – P. 98–110.
2. Sharma J. A novel family of composite Newton–Traub methods for solving systems of nonlinear equations / J. R. Sharma, R. Sharma, and N. Kalra // Applied Mathematics and Computation. – 2015. – Vol. 269. – P. 520–535.
3. Wang X. Semilocal convergence of a sixth-order Jarrat method in Banach spaces / X.Wang, J. Kou, and C. Gu // Numerical Algorithms. – 2011. – Vol. 57. – P. 441–456.
4. Argyros I. Extended local convergence for the combined Newton–Kurchatov method under the generalized Lipschitz conditions / I. Argyros and S. Shakhno // Mathematics. – 2019. – Vol. 7. – № 207. – https://doi.org/10.3390/math7020207.
5. Argyros I. Extended two-step-Kurchatov method for solving Banach space valued nondifferentiable equations / I. Argyros and S. Shakhno // International Journal of Applied and Computational Mathematics. – 2020. – Vol. 6. – № 3. – https://doi.org/10.1007/s40819-020-0784-y.
6. Argyros I. Two-step solver for nonlinear equations / I. Argyros, S. Shakhno, and H. Yarmola // Symmetry. – 2019. – Vol. 11. – № 128. – https://doi.org/10.3390/sym11020128.
7. Grau-S´anchez M.On the approximation of derivatives using divided difference operators preserving the local convergence order of iterative methods / M. Grau-S´anchez, M. Noguera, and S. Amat // Journal of Computational and Applied Mathematics. – 2013. – Vol. 237. – P. 363–372.
8. Homeier H.H. A modified Newton method with cubic convergence: The multivariable case / H. H. H. Homeier // Journal of Computational and Applied Mathematics. – 2004. – Vol. 169. – P. 161–169.
9. Behl R. Efficient family of sixth-order methods for nonlinear models with its dynamics / R. Behl, P. Maroju, and S. S. Motsa // International Journal of Computer Methods. – 2018. – Vol. 15. – P. 1–26.
10. Cordero A. Variants of Newton’s method using fifth-order quadrature formulas / A. Cordero and J. R. Torregrosa // Applied Mathematics and Computation. – 2007. – Vol. 190. – P. 686–698.
11. Frontini M. Third-order methods from quadrature formulae for solving systems of nonlinear equations / M. Frontini and E. Sormani // Applied Mathematics and Computation. – 2004. – Vol. 149. – P. 771–782.
12. Waseem H. Efficient method for solving a system of nonlinear equations / H. Waseem, M. A. Noor, and K. I. Noor // Applied Mathematics and Computation. – 2016. – Vol. 275. – P. 134–146.
13. Khan W.A. A new fourth order Newton-type method for solution of system of nonlinear equations / W. A. Khan, K. I. Noor, K. Bhatti, and F. A. Ansari // Applied Mathematics and Computation. – 2015. – Vol. 270. – P. 724–730.
14. Sharma R. A modified Newton– ¨Ozban composition for solving nonlinear systems / R. Sharma, J. R. Sharma, and N. Kalra // International Journal of Computational Methods. – 2020. – Vol. 17(08). – https://doi.org/10.1142/S0219876219500476.
15. Narang M. New two-parameter Chebyshev–Halley-like family of fourth and sixth-order methods for systems of nonlinear equations / M. Narang, S. Bhatia, and V. Kanwar // Applied Mathematics and Computation. – 2016. – Vol. 275. – P. 394–403.
16. Argyros I.K. Computational Theory of Iterative Methods / I. K. Argyros // Elsevier. – 2007. New York.
17. Lotfi T. Some new efficient multipoint iterative methods for solving nonlinear systems of equations / T. Lotfi, P. Bakhtiari, A. Cordero, K. Mahdiani, and J. R. Torregrosa // International Journal of Computer Mathematics. – 2014. – Vol. 92. – P. 1921–1934.
18. Grau-S´anchez M. On some computational orders of convergence / M. Grau-S´anchez, M. Noguera, and J. M. Guti´errez // Applied Mathematics Letters. – 2010. – Vol. 23(4). – P. 472–478. – https://doi.org/10.1016/j.aml.2009.12.006.
19. Iakymchuk R. ExBLAS: Reproducible and Accurate BLAS Library / R. Iakymchuk, C. Collange, D. Defour, and S. Graillat // Proceedings of the Numerical Reproducibility at Exascale (NRE2015) Workshop, held as part of the Supercomputing Conference (SC15). – Austin, TX, United States. – 2015. – https://hal.science/hal-01202396.
20. Kantorovich L.V. Functional Analysis – 2nd ed. / Kantorovich L.V., Akilov G.P. // Pergamon. - 1982.
21. Mor´e J.J. Testing unconstrained optimization software / J. J. Mor´e, B. S. Garbow, and K. E. Hillstrom // ACM Transactions on Mathematical Software. – 1981. – Vol. 7(1). – P. 17–41.
22. Demmel J. Efficient reproducible floating point summation and BLAS / J. Demmel, W. Ahrens, and H. D. Nguyen // Technical Report UCB/EECS-2016-121. – 2016. – http://www2.eecs.berkeley.edu/Pubs/TechRpts/2016/EECS-2016-121.html.
23. Esmaeili H. An efficient three-step method to solve system of nonlinear equations / H. Esmaeili and M. Ahmadi // Applied Mathematics and Computation. – 2015. – Vol. 266. – P. 1093–1101.
24. Xiao X. A new class of methods with higher-order of convergence for solving systems of nonlinear equations / X. Xiao and H. Yin // Applied Mathematics and Computation. – 2015. – Vol. 264. – P. 300–309.
25. ¨Ozban A.Y. Some new variants of Newton’s Method / A. Y. ¨Ozban // Applied Mathematics Letters. – 2004. – Vol. 17. – P. 677–682.
DOI: http://dx.doi.org/10.30970/vam.2025.35.13707
Посилання
- Поки немає зовнішніх посилань.
