Solving University Timetabling Problems Using Constraint Programming with Adaptive Local Search and Elite Solution Memory

Oleh Bohdanovych Zanevych, Vitaliy Mykhailovych Kukharskyy

Анотація


University course timetabling is a complex combinatorial optimization problem that requires balancing hard feasibility requirements with diverse institutional and stakeholder preferences. This paper introduces a hybrid algorithm that integrates Constraint Programming (CP) with Adaptive Local Search (ALS) to effectively address both feasibility and solution quality. CP provides a rigorous mechanism for generating feasible initial solutions that satisfy strict requirements such as room capacities and conflict avoidance, while ALSadaptively explores neighborhoods to refine solution quality with respect to soft constraints. The approach incorporates adaptive neighborhood selection based on the pursuit algorithm, enabling the search to dynamically identify and prioritize effective operators. It further employs a multi-start framework enhanced by elite solution memory and path relinking strategies, ensuring robust intensification around promising solutions while maintaining diversification across the search space. To improve efficiency, the algorithm integrates constraint caching and incremental evaluation techniques that significantly reduce computational overhead. Experimental results on diverse datasets, demonstrate the method’s consistent ability to generate feasible, high-quality timetables. The proposed approach advances the state of the art by uniting guaranteed feasibility with adaptive optimization, offering a practical and scalable solution for real-world university scheduling systems.

Повний текст:

PDF (English)

Посилання


Babaei H. A survey of approaches for university course timetabling problem / H. Babaei,
J. Karimpour, A. Hadidi // Computers & Industrial Engineering. – 2015. – Vol. 86. – P. 43–
59. URL: https://doi.org/10.1016/j.cie.2014.11.010.

Chen M. C. A survey of university course timetabling problem: perspectives, trends and opportunities / M. C. Chen, S. L. Goh, N. R. Sabar, G. Kendall // IEEE Access. – 2021. – Vol. 9. – P. 106515–106529. URL: https://doi.org/10.1109/ACCESS.2021.3100613.

Ceschia S. Educational timetabling: Problems, benchmarks, and state-of-the-art results /
S. Ceschia, L. Di Gaspero, A. Schaerf // European Journal of Operational Research. – 2023. – Vol. 308, No. 1. – P. 1–18. URL: https://doi.org/10.1016/j.ejor.2022.07.011.

Rappos E. A mixed-integer programming approach for solving university course timetabling problems / E. Rappos, E. Thiemard, S. Robert, et al. // Journal of Scheduling. – 2022. – Vol. 25. – P. 391–404. URL: https://doi.org/10.1007/s10951-021-00715-5.

Awad F. H. Large-scale timetabling problems with adaptive tabu search / F. H. Awad, A. Al- Kubaisi, M. Mahmood // Journal of Intelligent Systems. – 2022. – Vol. 31, No. 1. – P. 168–
176. URL: https://doi.org/10.1515/jisys-2022-0003.

Almeida J. A hybrid meta-heuristic for generating feasible large-scale course timetables us- ing instance decomposition / J. Almeida, J. R. Figueira, A. P. Francisco, D. Santos // arXiv preprint arXiv:2310.20334. – 2023. URL: https://doi.org/10.48550/arXiv.2310.20334.

Abdipoor S. Meta-heuristic approaches for the University Course Timetabling Problem /
S. Abdipoor, R. Yaakob, S. L. Goh, S. Abdullah // Intelligent Systems with Applications. – 2023. – Vol. 19. – P. 200253. URL: https://doi.org/10.1016/j.iswa.2023.200253.

Rezaeipanah A. A hybrid algorithm for the university course timetabling problem using the improved parallel genetic algorithm and local search / A. Rezaeipanah,
M. Matoori, G. Ahmadi // Applied Intelligence. – 2021. – Vol. 51, No. 1. – P. 467–492. URL: https://doi.org/10.1007/s10489-020-01833-x.

Bashab A. Optimization Techniques in University Timetabling Problem: Constraints, Methodologies, Benchmarks, and Open Issues / A. Bashab, A. O. Ibrahim, I. A. Tarigo Hashem, K. Aggarwal, F. Mukhlif, et al. // Computers, Materials & Continua. – 2023. – Vol. 74, No. 3. – P. 6461–6484. URL: https://doi.org/10.32604/cmc.2023.034051.

Siew E. S. A Survey of Solution Methodologies for Exam Timetabling Problems / E. S. Siew,
S. N. Sze, S. L. Goh, G. Kendall, N. R. Sabar, S. Abdullah // IEEE Access. – 2024. – Vol. 12. –
P. 41479–41498. URL: https://doi.org/10.1109/ACCESS.2024.3378054.

Mokhtari M. Developing a Model for the University Course Timetabling Problem: A Case Study / M. Mokhtari, M. V. Sarashk, M. Asadpour, N. Saeidi, O. Boyer // Complexity. – 2021. – Vol. 2021. – P. 1–12. URL: https://doi.org/10.1155/2021/9940866.

Arratia-Martinez N. M. Solving a University Course Timetabling Problem Based on AACSB Policies / N. M. Arratia-Martinez, P. A. Avila-Torres, J. C. Trujillo-Reyes // Mathematics. – 2021. – Vol. 9, No. 19. – P. 2500. URL: https://doi.org/10.3390/math9192500.

Steiner E. Curriculum-Based University Course Timetabling Considering Individual Course of Studies // Central European Journal of Operations Research. – 2025. URL: https://doi.org/10.1007/s10100-024-00923-2.

Davison M. Modelling and Solving the University Course Timetabling Problem with Hybrid Teaching Considerations / M. Davison, A. Kheiri, K. G. Zografos // Journal of Scheduling. – 2024. – Vol. 28, No. 2. – P. 195–215. URL: https://doi.org/10.1007/s10951-024-00817-w.

Garey M. R. Computers and Intractability: A Guide to the Theory of NP-Completeness /
M. R. Garey, D. S. Johnson. – W. H. Freeman, 1979.

Bellio R. Two-stage multi-neighborhood simulated annealing for uncapacitated examination timetabling / R. Bellio, S. Ceschia, L. Di Gaspero, A. Schaerf // Computers & Operations Research. – 2021. – Vol. 132. – P. 105300. URL: https://doi.org/10.1016/j.cor.2021.105300.

Drake J. H. Recent advances in selection hyper-heuristics / J. H. Drake, A. Kheiri, E. ?zcan,
E. K. Burke // European Journal of Operational Research. – 2020. – Vol. 285, No. 2. – P. 405–
428. URL: https://doi.org/10.1016/j.ejor.2019.07.073.

Dewi S. Solving examination timetabling problem within a hyper-heuristic framework /
S. Dewi, R. Tyasnurita, F. S. Pratiwi // Bulletin of Electrical Engineering and Informatics. – 2021. – Vol. 10, No. 3. URL: https://doi.org/10.11591/eei.v10i3.2996.

Zanevych O. Modified Genetic Algorithm with Enhanced Gene Correction for Optimal Class Scheduling in Higher Education Institutions // Proceedings of the 2023 IEEE 13th Inter- national Conference on Electronics and Information Technologies (ELIT). – Lviv, Ukraine, 2023. – P. 1–6. URL: https://doi.org/10.1109/ELIT61488.2023.10310937.

Cruz-Rosales M. H. Metaheuristic with Cooperative Processes for the University Course Timetabling Problem / M. H. Cruz-Rosales, M. A. Cruz-Chavez, F. Alonso-Pecina,
J. d. C. Peralta-Abarca, E. Y. Avila-Melgar, B. Martinez-Bahena, J. Enriquez-Urbano // Ap- plied Sciences. – 2022. – Vol. 12, No. 2. – P. 542. URL: https://doi.org/10.3390/app12020542.

Sylejmani K. Simulated annealing with penalization for university course timetabling // Journal of Scheduling. – 2023. – Vol. 26. – P. 497–517. URL: https://doi.org/10.1007/s10951-022-00747-5.

Shao X. A Novel and Effective University Course Scheduler Using Adaptive Parallel Tabu Search and Simulated Annealing / X. Shao, S. Y. Lee, C. S. Kim // KSII Transac- tions on Internet and Information Systems. – 2024. – Vol. 18, No. 4. – P. 843–859. URL: https://doi.org/10.3837/tiis.2024.04.002.

Feutrier T. Generalizing the Structure of a University Timetabling Solver // Proceed- ings of the ACM Symposium on Principles of Enterprise Computing. – 2025. URL: https://doi.org/10.1145/3712255.3726683.

Abreu L. R. A new hybridization of adaptive large neighborhood search with constraint programming for open shop scheduling with sequence-dependent setup times / L. R. Abreu,
M. S. Nagano // Computers & Industrial Engineering. – 2022. – Vol. 168. – P. 108128. URL: https://doi.org/10.1016/j.cie.2022.108128.

Kallestad J. A general deep reinforcement learning hyperheuristic framework for solving combinatorial optimization problems / J. Kallestad, R. Hasibi, A. Hemmati, K. S?rensen // European Journal of Operational Research. – 2023. – Vol. 309, No. 1. – P. 446–468. URL: https://doi.org/10.1016/j.ejor.2023.01.017.

Dokeroglu T. Hyper-heuristics: A survey and taxonomy / T. Dokeroglu, T. Kucukyilmaz, E.-G. Talbi // Computers & Industrial Engineering. – 2024. – Vol. 187. – P. 109815. URL: https://doi.org/10.1016/j.cie.2023.109815.

Manescu A.-R. HyperDE: An Adaptive Hyper-Heuristic for Global Optimization / A.-R. Manescu, B. Dumitrescu // Algorithms. – 2023. – Vol. 16, No. 9. – P. 451. URL: https://doi.org/10.3390/a16090451.




DOI: http://dx.doi.org/10.30970/vam.2025.34.13638

Посилання

  • Поки немає зовнішніх посилань.