Genetic programming with a method of fundamental solutions for solving the steady-state inverse geometric problem
Анотація
Повний текст:
PDF (English)Посилання
Alves C.J.S. On the choice of source points in the method of fundamental solutions / C.J.S. Alves // Engineering Analysis with Boundary Elements. – 2009. – Vol. 33. – P. 1348–1361.
Bogomolny A. Fundamental solutions method for elliptic boundary value problems / A. Bogomolny // SIAM Journal on Numerical Analysis. – 1985. – Vol. 22. – P. 644–669.
Borachok I. Numerical solution of a Cauchy problem for Laplace equation in 3-dimensional domains by integral equations / I. Borachok, R. Chapko, B.T. Johansson // Inverse Problems in Science and Engineering. – 2016. – Vol. 24(9). – P. 1550–1568.
Borachok I. Genetic programming for the two-dimensional boundary reconstruction problem / I. Borachok, A. Marchenko // Visnyk of the Lviv University, Series Applied Mathematics and Computer Science. – 2023. – Vol. 31. – P. 127–141.
Chapko R. On the non-linear integral equation approaches for the boundary reconstruction in double-connected planar domains / R. Chapko, O. Ivanyshyn Yaman, T. Kanafotskyi // Journal of Numerical and Applied Mathematics. – 2016. – Vol. 2 (122). – P. 7–20.
Chapko R. On a nonlinear integral equation approach for the surface reconstruction in semi-infinite-layered domains / R. Chapko, O. Ivanyshyn, O. Protsyuk // Inverse Problems in Science and Engineering. – 2013. – Vol. 21. – P. 547–561.
Eckel H. Non-linear integral equations for the complete electrode model in inverse impedance tomography / H. Eckel, R. Kress // Applicable Analysis. – 2008. – Vol. 87. – P. 1267–1288.
Fairweather G. The method of fundamental solutions for elliptic boundary value problems / G. Fairweather, A. Karageorghis // Advances in Computational Mathematics. – 1998. – Vol. 9. – P. 69–95.
Ivanyshyn O. Nonlinear integral equation methods for the reconstruction of an acoustically sound-soft obstacle / O. Ivanyshyn, B.T. Johansson // Journal of Integral Equations and Applications. – 2007. – Vol. 19. – P. 289–308.
Ivanyshyn O. Nonlinear integral equations for solving inverse boundary value problems for inclusions and cracks / O. Ivanyshyn, R. Kress // Journal of Integral Equations and Applications. – 2006. – Vol. 18. – P. 13–38.
Goldberg D.E. Genetic Algorithm in Search, Optimization and Machine Learning / D.E. Goldberg. – Addison-Wesley, Reading, MA, 1989.
Holland J.H. Adaptation in Natural and Artificial Systems / J.H. Holland. – University of Michigan Press, Ann Arbor, 1975.
Karageorghis A. A meshless numerical identification of a sound-hard obstacle / A. Karageorghis, D. Lesnic // Engineering Analysis with Boundary Elements. – 2012. – Vol. 36(7). – P. 1074–1081.
Karageorghis A. A survey of applications of the MFS to inverse problems / A. Karageorghis, D. Lesnic, L. Marin // Inverse Problems in Science and Engineering. – 2011. – Vol. 19. – P. 309–336.
Koza J.R. Genetic Programming / J.R. Koza, R. Poli // In: Burke, E.K., Kendall, G. (eds) Search Methodologies. Springer, Boston, MA, 2005.
Kress R. Linear Integral Equations. 2nd ed. / R. Kress. – Springer-Verlag, Berlin Heidelberg New York, 1999.
Kress R. Nonlinear integral equations and the iterative solution for an inverse boundary value problem / R. Kress, W. Rundell // Inverse Problems. – 2005. – Vol. 21. – P. 1207–1223.
Luke S. Issues in Scaling Genetic Programming: Breeding Strategies, Tree Generation, and Code Bloat / S. Luke. – [Dissertation] University of Maryland, 2000.
McLean W. Strongly Elliptic Systems and Boundary Integral Operators / W. McLean. – Cambridge University Press, Cambridge, 2000.
Mera N.S. On the use of Genetic Algorithms for Solving Ill-Posed Problems / N.S. Mera, L. Elliott, D.B. Ingham // Inverse Problems in Engineering. – 2010. – Vol. 11. – P. 105–121.
Michalewicz Z. Genetic Algorithms + Data Structures = Evolution Programs. 3rd ed. / Z. Michalewicz. – Springer-Verlag, Berlin, 1996.
Moraglio A. Geometric Semantic Genetic Programming / A. Moraglio, K. Krzysztof, J. Colin // Parallel Problem Solving from Nature - PPSN XII. Lecture Notes in Computer Science, vol. 7491, Springer, Berlin, Heidelberg, 2012.
Nadizar G. Geometric semantic GP with linear scaling: Darwinian versus Lamarckian evolution / G. Nadizar, B. Sakallioglu, F. Garrow, S. Silva, L. Vanneschi // Genetic Programming and Evolvable Machines. – 2024. – Vol. 25(17).
DOI: http://dx.doi.org/10.30970/vam.2024.33.12373
Посилання
- Поки немає зовнішніх посилань.
