KINETICS OF RELAXATION OF RAT MYOMETRIUM IN CONDITIONS OF INHIBITION OF PLASMA MEMBRANE CALCIUM PUMP AND SYSTEMS OF ACTIVE Са2+ TRANSPORT OF INTRACELLULAR Са2+-DEPOT

O. V. Tsymbalyuk


DOI: http://dx.doi.org/10.30970/sbi.1202.565

Abstract


The processes of regulation of smooth muscle contractile function depend greatly on the efficiency of maintaining Са2+-homeostasis by systems of active ionic transport of the plasma membrane (calcium pump and Na+,Ca2+-exchanger) and intracellular stores (sarcoplasmic reticulum and mitochondria). In this work, the effect of calixarene C-716 (macrocyclic compound capable of blocking functioning of the plasma membrane calcium pump) on the kinetics of relaxing K+-induced contraction of rat myomet­rium smooth muscles, while inhibiting the systems of active transport of calcium ions of intracellular Са2+-stores, were investigated. It was established that the application of 100 mM calixarene at the maximum of the phase component of the K+-induced contractile response did not change the kinetic parameters of the relaxation process (the normalized maximal velocity of relaxation phase Vnr and the half-maximal time of relaxation τ1/2). The tonic component of K+-induced contraction remained without statistically significant changes. Blocking of Са2+-accumulating function of mitochondria by the protonophore СССР caused a significant increase in both the parameter Vnr and the tonic component of K+-induced contraction, while the τ1/2 index remained at the control level. Blocking calcium pump of sarcoplasmatic reticulum with thapsigargin (TG) caused a conside­rable increase in the τ1/2 ,Vnr parameters and the tonic component of the K+-induced contraction. Combination of TG and СССР induce further increase in the Vnr parameter and the tonic component of K+-induced contraction. The action of calixarene С-716 (100 mM) at the background of the impact of TG and СССР was accompanied by further increase in the tonic contraction, Vnr remained at the increased level, and the τ1/2 index decreased. Possible mechanisms for changing the mechanokinetic parameters of relaxing K+-induced contraction of myometrium is discussed. Analysis of the results of our experimental data and the data of other researchers allow predicting that an increase in the rate of relaxation of myometrium smooth muscles at the action of calixarene C-716 under the conditions of blockage of intracellular Ca2+ depots is associated with a significant activation of NO synthesis by constitutive forms of NO-synthases, whereas an increase in the tonic component of K+-contraction under these conditions is probably due to an elevated concentration of Ca2+ ions in the myocytes.


Keywords


myometrium, relaxation, systems of active Са2+ transport, plasma membrane calcium pump, calixarene C-716, kinetic analysis

Full Text:

PDF

References


1. Brini M., Calм T., Ottolini D., Carafoli E. The plasma membrane calcium pump in health and disease. FEBS J, 2013; 280 (21): 5385-5397.
https://doi.org/10.1111/febs.12193
PMid:23413890

2. Brini M., Carafoli E. Calcium Pumps in Health and Disease. Physiol. Rev, 2009; 89: 1341-1378.
https://doi.org/10.1152/physrev.00032.2008
PMid:19789383

3. Brini M., Carafoli E. The Plasma Membrane Ca2+ ATPase and the Plasma Membrane Sodium Calcium Exchanger Cooperate in the Regulation of Cell Calcium. Cold Spring Harb. Perspect Biol, 2011; 3 (2): a004168.
https://doi.org/10.1101/cshperspect.a004168
PMid:21421919 PMCid:PMC3039526

4. BurdygaTh.V., Kosterin S.A. Kinetic analysis of smooth muscle relaxation. Gen. Physiol. Biophys, 1991; 10: 589-598.

5. de Sautu M., Saffioti N.A., Ferreira-Gomes M.S., Rossi R.C., Rossi J.P.F.C., Mangialavori I.C. Aluminum inhibits the plasma membrane and sarcoplasmic reticulum Ca2+-ATPases by different mechanisms. Biochim. Biophys. Acta, 2018; 1860 (8): 1580-1588.
https://doi.org/10.1016/j.bbamem.2018.05.014
PMid:29859139

6. Gravina F.S., Parkington H.C., Kerr K.P., de Oliveira R.B., Jobling P., Coleman H.A., Sandow S.L., Davies M.M., Imtiaz M.S., van Helden D.F. Role of mitochondria in contraction and pacemaking in the mouse uterus. Br. J. Pharmacol, 2010; 161 (6): 1375-1390.
https://doi.org/10.1111/j.1476-5381.2010.00949.x
PMid:20942856 PMCid:PMC3000661

7. Khan I., Tabb T.N., Garfield R. E.,Grover A.K. Ca pump messenger RNA expression in pregnant rat uterus. Biochem. Int, 1992; 27(1): 189-196.

8. Kim H.J., Lee G.S., Ji Y.K., Choi K.C., Jeung E.B. Differential expression of uterine calcium transporter 1 and plasma membrane Ca2+ ATPase 1b during rat estrous cycle. Am. J. Physiol. Endocrinol. Metab, 2006; 291: E234-E241.
https://doi.org/10.1152/ajpendo.00434.2005
PMid:16825604

9. Lewis S., Little R., Baudoin F., Prehar S., Neyses L., Cartwright E.J., Austin C. Acute inhibition of PMCA4, but not global ablation, reduces blood pressure and arterial contractility via a nNOS-dependent mechanism. J. Cell. Mol. Med, 2018; 22(2): 861-872.
https://doi.org/10.1111/jcmm.13371
PMid:29193716 PMCid:PMC5783868

10. Liu L., Ishida Y., Okunade G., Pyne-Geithman G.J., Shull G.E., Paul R.J. Distinctrolesof PMCA isoformsin Ca2+ homeostasis of bladder smooth muscle: evidence from PMCA gene-ablated mice. Am. J. Physiol. Cell Physiol, 2007; 292: C423-C431.
https://doi.org/10.1152/ajpcell.00313.2006
PMid:16956963

11. Liu L., Ishida Y., Okunade G., Shull G.E., Paul R.J. Role of plasma membrane Ca2+-ATPase in contraction-relaxation processes of the bladder: evidence from PMCA gene-ablated mice. Am. J. Physiol. Cell. Physiol, 2006; 290(4): C1239-С1247.
https://doi.org/10.1152/ajpcell.00440.2005
PMid:16291816

12. McCarron J.G., Chalmers S., Bradley K.N., MacMillan D., Muir T.C. Ca2+microdomains in smooth muscle. Cell Calcium, 2006; 40(5-6): 461-493.
https://doi.org/10.1016/j.ceca.2006.08.010
PMid:17069885

13. NikonishinaYu.V., Mazur Yu.Yu. Inhibitoral influence of structural analysis of calix[4]arene C-90 on Ca2+, Mg2+-ATPase of plasmatic membrane. Biology: from molecule to biosphere: Materials of the Xth International Conference of Young Scientists (December 2-4, 2015, Kharkiv, Ukraine). - Kharkiv: FOP Shapovalova T.M., 2015. - 256 p. (In Ukrainian).

14. Pande J., Szewczyk M.M., Grover A.K. Allosteric inhibitors of plasma membrane Ca2+ pumps: Invention and applications of caloxins. World J. Biol. Chem, 2011; 2(3): 39-47.
https://doi.org/10.4331/wjbc.v2.i3.39
PMid:21537489 PMCid:PMC3083994

15. Pehlivanoğlu B., Bayrak S., Doğan M. A close look at the contraction and relaxation of the myometrium; the role of calcium. J. Turk. Ger. Gynecol. Assoc, 2013; 14(4): 230-234.
https://doi.org/10.5152/jtgga.2013.67763
PMid:24592112 PMCid:PMC3935537

16. Penniston J., Enyedi A. Modulation of the plasma membrane Ca2+ pump. J. Membr. Biol, 1998; 165: 101-109.
https://doi.org/10.1007/s002329900424
PMid:9744998

17. Poburko D., Liao C.H., Lemos V.S., Lin E., Maruyama Y., Cole W.C., van Breemen C. Transient receptor potential channel 6-mediated, localized cytosolic [Na+] transients drive Na+/Ca2+ exchanger-mediated Ca2+ entry in purinergically stimulated aorta smooth muscle cells. Circ. Res, 2007; 101(10): 1030-1038.
https://doi.org/10.1161/CIRCRESAHA.107.155531
PMid:17872462

18. Sanborn B.M. Hormonal signaling and signal pathway crosstalk in the control of myometrial calcium dynamics. Semin. Cell Dev Biol, 2007; 18(3): 305-314.
https://doi.org/10.1016/j.semcdb.2007.05.007
PMid:17627855 PMCid:PMC2000447

19. Schuh K., Uldrijan S., Telkamp M., Röthlein N., Neyses L. The plasma membrane calmodulin-dependent calcium pump: a major regulator of nitric oxide synthaseI. J. Cell Biol, 2001; 155(2): 201-205.
https://doi.org/10.1083/jcb.200104131
PMid:11591728 PMCid:PMC2198825

20. Shmigol A.V., Eisner D.A., Wray S. The role of the sarcoplasmic reticulum as a Ca2+ sink in rat uterine smooth muscle cells. J. Physiol, 1999; 520(1): 153-163.
https://doi.org/10.1111/j.1469-7793.1999.00153.x
PMid:10517808 PMCid:PMC2269575

21. Shull G.E., Okunade G., Liu L.H., Kozel P., Periasamy M., Lorenz J.N., Prasad V. Physiological functions of plasma membrane and intracellular Ca2+ pumps revealed by analysis of null mutants. Ann N Y Acad Sci, 2003; 986: 453-460.
https://doi.org/10.1111/j.1749-6632.2003.tb07229.x
PMid:12763865

22. Strehler E.E.Plasma Membrane Calcium ATPases as Novel Candidates for Therapeutic Agent Development. J. Pharm. Pharm. Sci, 2013; 16(2): 190-206.
https://doi.org/10.18433/J3Z011

23. Szewczyk M.M., Pande J., Grover A.K.Caloxins: a novel class of selective plasma membrane Ca2+ pump inhibitors obtained using biotechnology. Pflugers Arch, 2008; 456(2): 255-266.
https://doi.org/10.1007/s00424-007-0348-6
PMid:17909851

24. Tsymbalyuk O.V., Kosterin S.O. Effect of calixaren C-90 on contractile activity of smooth muscles of myometrium of rats. Studia Biologica, 2013; 7(3): 5-20. (In Ukrainian).
https://doi.org/10.30970/sbi.0703.298

25. Veklich T.A., Shkrabak A.A., Slinchenko N.N., Mazur I.I., Rodik R.V., Boyko V.I., Kalchenko V.I., Kosterin S.A. Calix[4]arene C-90 Selective lyInhibits Ca2+,Mg2+-ATPase of Myometrium Cell Plasma Membrane. Biokhimiya, 2014; 79(5): 532-540.
https://doi.org/10.1134/S0006297914050058
PMid:24954592

26. Veklich T.O. The inhibitory influence of calix[4]Arene of C-90 on the activity of Ca2+,Mg2+-ATPases in plasma membrane and sarcoplasmic reticulum in myometrium cells. Ukr. Biochem J, 2016; 88 (2): 5-15.
https://doi.org/10.15407/ubj88.02.005
PMid:29227596

27. Wray S., Burdyga T., Noble D., Noble K., Borysova L., Arrowsmith S. Progress in understanding electro-mechanical signalling in the myometrium. Acta Physiol (Oxf), 2015; 213(2): 417-431.
https://doi.org/10.1111/apha.12431
PMid:25439280


Refbacks

  • There are currently no refbacks.


Copyright (c) 2018 O. V. Tsymbalyuk

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.