ACCUMULATION OF HEAVY METALS IN BIRD’S EGGS IN VARIOUS TRANSFORMED AREAS OF POLTAVA REGION (UKRAINE)

Liana Litvin, Angela Chaplygina


DOI: http://dx.doi.org/10.30970/sbi.1901.817

Abstract


Background. Most heavy metals (HMs) enter the bodies of birds through food chains. The increase in sources of contamination raises the concentrations of HMs in the soil, leading to their greater absorption into bird tissues and accumulation in eggs. The concentrations of HMs can vary significantly between the eggshell and the contents of eggs in different species.
Materials and Methods. The study focused on the eggs of four passerine bird species in 2024. The analysis of HM content (Cd, Co, Cr, Mn, Fe, Cu, Zn, Pb, Ni) in the eggs was conducted using the atomic absorption method in the Laboratory of Instrumental Soil Research Methods, Standardization, and Metrology at the National Scientific Center ”O. N. Sokolovsky Institute of Soil Science and Agrochemistry”.
Results. The levels of HMs detected in the eggs of house martin, great tit, blackbird, and song thrush from technogenic (Poltava Mining and Processing Plant (PMPP)) and natural (Regional Landscape Park ”Nyzhniovorsklianskyi” (RLP) and Vakalivshchyna ravine complex (VAK)) areas indicate significant variability in their accumulation. Iron was the dominant element in all samples. In eggshells, iron ranged from 17.76±0.3 mg/kg (RLP) in the blackbird to 169.25±0.8 mg/kg (PMPP) in the song thrush. In egg contents, iron levels were consistently high across all samples, from 70.76±0.5 mg/kg (PMPP) in the great tit to 1107.8±2.51 mg/kg (RLP) in the house martin. Iron plays a crucial role in oxygen transport, storage, and utilization, which is essential for most enzymes and proteins during embryo development. Zinc levels were lower, ranging in eggshells from 1.55±0.26 mg/kg (RLP) in the blackbird to 27.58±0.89 mg/kg (RLP) in the song thrush. In egg contents, zinc levels showed less variation, from 9.19±0.2 mg/kg (PMPP) in the blackbird to 30.08±0.61 mg/kg (PMPP) in the great tit. Antioxidant properties of zinc strengthen the immune system and support metabolism. Manganese levels in eggshells ranged from 1.72±0.28 mg/kg (VAK) to 30.76±0.49 mg/kg (PMPP) in the great tit. In egg contents, manganese levels varied from 2.63±0.45 mg/kg (VAK) to 61.43±0.41 mg/kg (PMPP) in the great tit. Manganese compounds are less toxic than those of more common metals such as nickel and copper, but prolonged exposure may lead to reproductive dysfunction. A significant lead level (35.45±0.53 mg/kg) was detected in the egg contents of the blackbird (RLP), which could negatively affect embryo development. Such trace elements as chromium, copper, cadmium, cobalt, and nickel were detected in lower concentrations. The paper examines the influence of three factors on the content of heavy metals. Statistically significant interactions between the factors were identified, indicating the need for further research into the mechanisms of heavy metal accumulation and their environmental consequences.
Conclusion. The study confirmed that the level of heavy metals in bird eggs reflects the ecological state of the environment, allowing to assess the pollution of natural and man-made areas. Species and territorial features of the accumulation of Fe, Pb, Zn, Mn and other metals were identified suggesting the influence of the environment on their bioaccumulation. Three-factor analysis of variance showed that the main factors determining the concentrations of metals in eggs are environmental conditions and the habitat of birds. The results obtained emphasize the feasibility of using bird eggs as an effective tool for environmental monitoring.


Keywords


heavy metals, eggs, great tit, song thrush, common blackbird, house martin

Full Text:

PDF

References


Abdulkhaliq, A., Swaileh, K. M., Hussein, R. M., & Matani, M. (2012). Levels of metals (Cd, Pb, Cu and Fe) in cow's milk, dairy products and hen's eggs from the West Bank, Palestine. International Food Research Journal, 19 (3), 1089-1094.
Google Scholar

Alleva, E., Francia, N., Pandolfi, M., De Marinis, A. M., Chiarotti, F., & Santucci, D. (2006). Organochlorine and heavy-metal contaminants in wild mammals and birds of Urbino-Pesaro province, Italy: an analytic overview for potential bioindicators. Archives of Environmental Contamination and Toxicology, 51(1), 123-134. doi:10.1007/s00244-005-0218-1
CrossrefPubMedGoogle Scholar

Celik, E., Durmus, A., Adizel, O., & Nergiz Uyar, H. (2021). A bibliometric analysis: what do we know about metals(loids) accumulation in wild birds? Environmental Science and Pollution Research, 28(8), 10302-10334. doi:10.1007/s11356-021-12344-8
CrossrefPubMedGoogle Scholar

Chaplygina, A., & Pakhomov, O. (2020). Trophic links of the blackbird (Turdus merula Linnaeus, 1758) in transformed forest ecosystems of north-eastern Ukraine. Ekológia (Bratislava), 39(4), 333-342. doi:10.2478/eko-2020-0027
CrossrefGoogle Scholar

Chaplygina, A. B., & Yuzyk D. I. (2016). The analysis of heavy metal concentrations in eggs of collared flycatchers, Ficedula albicollis (Passeriformes, Muscicapidae), and tits, Parus major, Parus caeruleus (Passeriformes, Paridae), in different areas of north-eastern Ukrainе. Vestnik Zoologii, 50(3), 259-266. doi:10.1515/vzoo-2016-0030
CrossrefGoogle Scholar

Chaplygina, A. B., Yuzyk, D. I., & Savynska, N. O. (2016). The robin, Erithacus rubecula (Passeriformes, Turdidae), as a component of heterotrophic consortia of forest cenoses, Northeast Ukraine. Part 2. Vestnik Zoologii, 50(6), 493-502. doi:10.1515/vzoo-2016-0056
CrossrefGoogle Scholar

Chaplygina, А. B., Filatova, О. V., Litvin, L. М., & Nykyforov, V. V. (2023). The main factors and prospects for the restoration of biodiversity in technogenic territories (on the example of the Poltava Mining and Processing Plant). Biosystems Diversity, 31(1), 100-112. doi:10.15421/012311
CrossrefGoogle Scholar

Costa, R. A., Eeva, T., Eira, C., Vaqueiro, J., & Vingada, J. V. (2012). Assessing heavy metal pollution using Great Tits (Parus major): feathers and excrements from nestlings and adults. Environmental Monitoring and Assessment, 185(6), 5339-5344. doi:10.1007/s10661-012-2949-6
CrossrefPubMedGoogle Scholar

Dańczak, A., Ligocki, M., & Kalisińska, E. (1997). Heavy metals in the organs of anseriform birds. Polish Journal of Environmental Studies, 6(5), 39-42.
Google Scholar

Dauwe, T., Bervoets, L., Pinxten, R., Blust, R., & Eens, M. (2003). Variation of heavy metals within and among feathers of birds of prey: effects of molt and external contamination. Environmental Pollution, 124(3), 429-436. doi:10.1016/s0269-7491(03)00044-7
CrossrefPubMedGoogle Scholar

Deng, H., Zhang, Z., Chang, C., & Wang, Y. (2007). Trace metal concentration in great tit (Parus major) and greenfinch (Carduelis sinica) at the Western Mountains of Beijing, China. Environmental Pollution, 148(2), 620-626. doi:10.1016/j.envpol.2006.11.012
CrossrefPubMedGoogle Scholar

Egwumah, F. A., Egwumah, P. O., & Edet, D. (2017). Paramount roles of wild birds as bioindicators of contamination. International Journal of Avian & Wildlife Biology, 2(6), 194-200. doi:10.15406/ijawb.2017.02.00041
CrossrefGoogle Scholar

Fisher, I. J., Pain, D. J., & Thomas, V. G. (2006). A review of lead poisoning from ammunition sources in terrestrial birds. Biological Conservation, 131(3), 421-432. doi:10.1016/j.biocon.2006.02.018
CrossrefGoogle Scholar

Goede, A. A., & De Bruin, M. (1986). The use of bird feathers for indicating heavy metal pollution. Environmental Monitoring and Assessment, 7(3), 249-256. doi:10.1007/bf00418017
CrossrefPubMedGoogle Scholar

Grúz, A., Déri, J., Szemerédy, G., Szabó, K., Kormos, É., Bartha, A., Lehel, J., & Budai, P. (2017). Monitoring of heavy metal burden in wild birds at eastern/north-eastern part of Hungary. Environmental Science and Pollution Research, 25(7), 6378-6386. doi:10.1007/s11356-017-1004-0
CrossrefPubMedGoogle Scholar

Haas, M., & Kočvara, M. (2023). Elemental content in the tissues of the song thrush Turdus philomelos I. Accumulation of macro-and microminerals in internal organs and tissues. Oecologia Montana, 32(1), 9-24.
Google Scholar

Iwegbue, C. M. A., Nwozo, S. O., Overah, C. L., Ossai, E. K., Mkpado, C. I., Osazuwa, O., & Nwajei, G. E. (2012). Concentrations of selected metals in chicken eggs from commercial farms in Southern Nigeria. Toxicological & Environmental Chemistry, 94(6), 1152-1163. doi:10.1080/02772248.2012.693492
CrossrefGoogle Scholar

Jiménez, B., Rodríguez-Estrella, R., Merino, R., Gómez, G., Rivera, L., José González, M., Abad, E., & Rivera, J. (2005). Results and evaluation of the first study of organochlorine contaminants (PCDDs, PCDFs, PCBs and DDTs), heavy metals and metalloids in birds from Baja California, México. Environmental Pollution, 133(1), 139-146. doi:10.1016/j.envpol.2004.05.014
CrossrefPubMedGoogle Scholar

Kabeer, M. S., Hameed, I., Kashif, S. U. R., Khan, M., Tahir, A., Anum, F., & Raza, S. (2021). Contamination of heavy metals in poultry eggs: a study presenting relation between heavy metals in feed intake and eggs. Archives of Environmental & Occupational Health, 76(4), 220-232. doi:10.1080/19338244.2020.1799182
CrossrefPubMedGoogle Scholar

Kim, J., Shin, J. R., & Koo, T. H. (2009). Heavy metal distribution in some wild birds from Korea. Archives of Environmental Contamination and Toxicology, 56(2), 317-324. doi:10.1007/s00244-008-9180-z
CrossrefPubMedGoogle Scholar

Lee, D. P., Honda, K., & Tatsukawa, R. (1987). Comparison of tissue distributions of heavy metals in birds in Japan and Korea. Journal of the Yamashina Institute for Ornithology, 19(2), 103-116. doi:10.3312/jyio1952.19.103
CrossrefGoogle Scholar

Liang, J., Liu, J., Yuan, X., Zeng, G., Yuan, Y., Wu, H., & Li, F. (2016). A method for heavy metal exposure risk assessment to migratory herbivorous birds and identification of priority pollutants/areas in wetlands. Environmental Science and Pollution Research, 23(12), 11806-11813. doi:10.1007/s11356-016-6372-3
CrossrefPubMedGoogle Scholar

Liu, J., Liang, J., Yuan, X., Zeng, G., Yuan, Y., Wu, H., Huang, X., Liu, J., Hua, S., Li, F., & Li, X. (2015). An integrated model for assessing heavy metal exposure risk to migratory birds in wetland ecosystem: a case study in Dongting Lake Wetland, China. Chemosphere, 135, 14-19. doi:10.1016/j.chemosphere.2015.03.053
CrossrefPubMedGoogle Scholar

Llacuna, S., Gorriz, A., Sanpera, C., & Nadal, J. (1995). Metal accumulation in three species of passerine birds (Emberiza cia, Parus major, and Turdus merula) subjected to air pollution from a coal-fired power plant. Archives of Environmental Contamination and Toxicology, 28(3), 298-303. doi:10.1007/bf00213105
CrossrefGoogle Scholar

Manjula, M., Mohanraj, R., & Devi, M. P. (2015). Biomonitoring of heavy metals in feathers of eleven common bird species in urban and rural environments of Tiruchirappalli, India. Environmental Monitoring and Assessment, 187(5), 267. doi:10.1007/s10661-015-4502-x
CrossrefPubMedGoogle Scholar

Mukhtar, H., Chan, C.-Y., Lin, Y.-P., & Lin, C.-M. (2020). Assessing the association and predictability of heavy metals in avian organs, feathers, and bones using crowdsourced samples. Chemosphere, 252, 126583. doi:10.1016/j.chemosphere.2020.126583
CrossrefPubMedGoogle Scholar

Norheim, G. (1987). Levels and interactions of heavy metals in sea birds from Svalbard and the Antarctic. Environmental Pollution, 47(2), 83-94. doi:10.1016/0269-7491(87)90039-x
CrossrefPubMedGoogle Scholar

Onyenweaku, E. O., Ene-Obong, H. N., Williams, I. O., & Nwaehujor, C. O. (2018). Comparison of nutritional composition of bird egg varieties found in Southern Nigeria: a preliminary study. Food and Nutrition Sciences, 9(7), 868-879. doi:10.4236/fns.2018.97065
CrossrefGoogle Scholar

Orłowski, G., Kamiński, P., Karg, J., Baszyński, J., Szady-Grad, M., Koim-Puchowska, B., & Klawe, J. J. (2015). Variable contribution of functional prey groups in diets reveals inter- and intraspecific differences in faecal concentrations of essential and non-essential elements in three sympatric avian aerial insectivores: a re-assessment of usefulness of bird faeces in metal biomonitoring. Science of The Total Environment, 518-519, 407-416. doi:10.1016/j.scitotenv.2015.02.078
CrossrefPubMedGoogle Scholar

Rokanuzzaman, B. M., Salma, U., Bristy, N. A., Kundu, S., Alam, S. S., & Khalil, Md. I. (2022). Assessment of heavy metals and trace elements in eggs and eggshells of Gallus gallus domesticus, Coturnix coturnix and Anas platyrhynchos from Bangladesh. Saudi Journal of Biomedical Research, 7(4), 137-153. doi:10.36348/sjbr.2022.v07i04.004
CrossrefGoogle Scholar

Sarnowski, R., & Kellam, J. S. (2023). Concentrations of manganese in tufted titmouse feathers near metal processing plants. Birds, 4(1), 148-158. doi:10.3390/birds4010012
CrossrefGoogle Scholar

Scheifler, R., Coeurdassier, M., Morilhat, C., Bernard, N., Faivre, B., Flicoteaux, P., Giraudoux, P., Noël, M., Piotte, P., Rieffel, D., de Vaufleury, A., & Badot, P. M. (2006). Lead concentrations in feathers and blood of common blackbirds (Turdus merula) and in earthworms inhabiting unpolluted and moderately polluted urban areas. Science of the Total Environment, 371(1-3), 197-205. doi:10.1016/j.scitotenv.2006.09.011
CrossrefPubMedGoogle Scholar

Sobhanardakani, S. (2017). Assessment of levels and health risk of heavy metals (Pb, Cd, Cr, and Cu) in commercial hen's eggs from the city of Hamedan. Pollution, 3(4), 669-677.
Google Scholar

Sorensen, E. M. (1991). Metal poisoning in fish. CRC Press, Boca Rato.
Google Scholar

Stępniowska, A., Tutaj, K., Drażbo, A., Kozłowski, K., Ognik, K., & Jankowski, J. (2020). Estimated intestinal absorption of phosphorus and its deposition in chosen tissues, bones and feathers of chickens receiving chromium picolinate or chromium nanoparticles in diet. PLoS One, 15(11), e0242820. doi:10.1371/journal.pone.0242820
CrossrefPubMedPMCGoogle Scholar

Tsipoura, N., Burger, J., Feltes, R., Yacabucci, J., Mizrahi, D., Jeitner, C., & Gochfeld, M. (2008). Metal concentrations in three species of passerine birds breeding in the Hackensack Meadowlands of New Jersey. Environmental Research, 107(2), 218-228. doi:10.1016/j.envres.2007.11.003
CrossrefPubMedGoogle Scholar

Vakhutkevych, I. Y. (2012). Doslidzhennia vmistu vazhkykh metaliv u kuriachykh yaitsiakh [Study of heavy metal content in chicken eggs]. Scientific Bulletin of Lviv National University of Veterinary Medicine and Biotechnology named after S. Z. Gzhytskyi, 14(3), 26-29. (In Ukrainian)
Google Scholar

Vasylitseva, L. P., & Paranyak, R. P. (2017). Osoblyvosti nakopychennia vazhkykh metaliv v orhanizmi gusei riznoho viku [Features of heavy metal accumulation in the bodies of geese of different ages]. Scientific Bulletin of Lviv National University of Veterinary Medicine and Biotechnologies named after S. Z. Gzhytsky. Series: Agricultural Sciences, 19(79), 150-153. (In Ukrainian)
Google Scholar

Veerle, J., Tom, D., Rianne, P., Lieven, B., Ronny, B., & Marcel, E. (2004). The importance of exogenous contamination on heavy metal levels in bird feathers. A field experiment with free-living great tits, Parus major. Journal of Environmental Monitoring, 6(4), 356-360. doi:10.1039/b314919f
CrossrefPubMedGoogle Scholar

Yarys, O., Chaplygina, A., & Kratenko, R. (2021). Breeding phenology of Common Redstart (Phoenicurus phoenicurus) and its reproduction biology with artificial nests in Northeastern Ukraine. Ornis Hungarica, 29(2), 122-138. doi:10.2478/orhu-2021-0024
CrossrefGoogle Scholar

Zhang, W., & Ma, J. (2011). Waterbirds as bioindicators of wetland heavy metal pollution. Procedia Environmental Sciences, 10, 2769-2774. doi:10.1016/j.proenv.2011.09.429
CrossrefGoogle Scholar


Refbacks

  • There are currently no refbacks.


Copyright (c) 2025 Liana Litvin, Angela Chaplygina

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.