KINETIC REGULARITIES OF THIACALIX[4]ARENE C-1193 ACTION ON Na+, K+-ATPase ACTIVITY OF THE PLASMA MEMBRANE AND CONTRACTILE ACTIVITY OF THE MYOMETRIUM
DOI: http://dx.doi.org/10.30970/sbi.1901.816
Abstract
Background. Nа+, K+-ATPase (sodium pump) is an electrogenic Са2+-independent Mg2+, Na+, K+-ATP-dependent transporting system of plasma membrane (PM), which conducts active transfer of univalent ions of Na and K and thus maintains their electrochemical gradients, required for normal functioning of the cell. It was proven that in some widesperad pathologies the activity of the sodium pump is disrupted. Therefore, the search for effectors - selective inhibitors and activators that would be able to specifically affect Na+, K+-ATPase, restoring its activity in pathological conditions, is very promising. The aim of this study was to investigate the action of thiacalix[4]arene С-1193 on the dependence of Nа+, K+-ATPase activity of PM of myometrium cells on the concentration of ATP and Mg ions, as well as on the isotonic contractile activity of the myometrium.
Materials and Methods. The experiments were conducted using outbred white non-pregnant rats. The inhibitory action of thiacalix[4]arene C-1193 (25,27-dibutoxythiacalix[4]arene-bis-hydroxymethylphosphonic acid) on the kinetic traits of Na+, K+-ATPase activity was studied in the experiments, conducted using the suspension of perforated plasma membranes of the myometrium cells. The registration of the contractile activity in the preparations of longitudinal smooth muscles of uterine horns with preserved endothelium was done in the isotonic mode. The study of the contractile activity of muscle preparations was carried out using mechanokinetic analysis methods.
Results. The study demonstrated that while inhibiting Na+, K+-ATPase, thiacalix[4]arene С-1193 did not change the kinetic parameters (Km, nH) of the dependence of the reaction velocity on the substrate concentration. Calix[4]arene C-1193 had practically no action on the affinity between Na+, K+-ATPase and ATP, which demonstrated the absence of competition between the binding centers for ATP and C-1193. There was no effect on the affinity and cooperative action of Mg ions either. Both cases demonstrated a considerable reduction in the maximal velocity of ATP hydrolysis.
It was found that thiacalix[4]arene С-1193 (in the concentration of 10 μM) modulated the isotonic reactions of pluricellular preparations of myometrium, induced via the pathways of electro- and pharmacomechanic coupling. It was also determined that under the effect of С-1193, there was an increase both in the amplitude of contractions and in the mechanokinetic parameters: contractions (ΔLmax, ΔLC and ΔLR) and velocities (VC and VR). The norm-setting for VC and VR regarding the amplitude of contractions at the action of С-1193 resulted in the loss of statistically significant differences between the maximal velocities of the contraction and relaxation phases.
Conclusions. The results of our research indicate that thiacalix[4]arene С-1193, has a non-competitive mechanism of inhibiting Nа+, K+-ATPase activity and has no specific action on Са2+-transporting systems of uterine myocytes.
Keywords
Full Text:
PDFReferences
Amazu, C., Ferreira, J. J., Santi, C. M., & England, S. K. (2020). Sodium channels and transporters in the myometrium. Current Opinion in Physiology, 13, 141-144. doi:10.1016/j.cophys.2019.11.011 Crossref ● PubMed ● PMC ● Google Scholar | ||||
| ||||
Blaustein, M. P., & Hamlyn, J. M. (2024). Sensational site: the sodium pump ouabain-binding site and its ligands. American journal of physiology. Cell Physiology, 326(4), C1120-C1177. doi:10.1152/ajpcell.00273.2023 Crossref ● PubMed ● PMC ● Google Scholar | ||||
| ||||
Bradford, M. M. (1976). A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Analytical Biochemistry, 72, 248-254. doi:10.1016/0003-2697(76)90527-3 Crossref ● PubMed ● Google Scholar | ||||
| ||||
Burdyga, V., & Kosterin, S. A. (1991). Kinetic analysis of smooth muscle relaxation. General Physiology and Biophysics, 10(6), 589-598. PubMed ● Google Scholar | ||||
| ||||
Cherepanov, S. M., Yuhi, T., Iizuka, T., Hosono, T., Ono, M., Fujiwara, H., Yokoyama, S., Shuto, S., & Higashida, H. (2023). Two oxytocin analogs, N-(p-fluorobenzyl) glycine and N-(3-hydroxypropyl) glycine, induce uterine contractions ex vivo in ways that differ from that of oxytocin. PloS One, 18(2), e0281363. doi:10.1371/journal.pone.0281363 Crossref ● PubMed ● PMC ● Google Scholar | ||||
| ||||
Coleman, A. W., Jebors, S., Cecillon, S., Perret, P., Garin, D., Marti-Battle, D. & Moulin, M. (2008). Toxicity and biodistribution of para-sulfonato-calix[4]arene in mice. New Journal of Chemistry, 32, 780-782. doi:10.1039/b718962a Crossref ● Google Scholar | ||||
| ||||
Contreras, R. G., Torres-Carrillo, A., Flores-Maldonado, C., Shoshani, L., & Ponce, A. (2024). Na+/K+-ATPase: more than an electrogenic pump. International Journal of Molecular Sciences, 25(11), 6122. doi:10.3390/ijms25116122 Crossref ● PubMed ● PMC ● Google Scholar | ||||
| ||||
Da Silva, E., Lazar, A. N., & Coleman, A. W. (2004). Biopharmaceutical applications of calixarenes. Journal of Drug Delivery Science and Technology, 14(1), 3-20. doi:10.1016/s1773-2247(04)50001-1 Crossref ● Google Scholar | ||||
| ||||
Gao, X., Luo, F., & Zhao, H. (2021). Cloves regulate Na+-K+-ATPase to exert antioxidant effect and inhibit UVB light-induced skin damage in mice. Oxidative Medicine and Cellular Longevity, 2021, 5197919. doi:10.1155/2021/5197919 Crossref ● PubMed ● PMC ● Google Scholar | ||||
| ||||
Garrett, A. S., Means, S. A., Roesler, M. W., Miller, K. J. W., Cheng, L. K., & Clark, A. R. (2022). Modeling and experimental approaches for elucidating multi-scale uterine smooth muscle electro- and mechano-physiology: a review. Frontiers in Physiology, 13, 1017649. doi:10.3389/fphys.2022.1017649 Crossref ● PubMed ● PMC ● Google Scholar | ||||
| ||||
Grare, M., Mourer, M., Fontanay, S., Regnouf-de-Vains, J. B., Finance, C., & Duval, R. E. (2007). In vitro activity of para-guanidinoethylcalix[4]arene against susceptible and antibiotic-resistant Gram-negative and Gram-positive bacteria. The Journal of Antimicrobial Chemotherapy, 60(3), 575-581. doi:10.1093/jac/dkm244 Crossref ● PubMed ● Google Scholar | ||||
| ||||
Kim, J. A., Yang, H., Hwang, I., Jung, E. M., Choi, K. C., & Jeung, E. B. (2011). Expression patterns and potential action of the calcium transport genes Trpv5, Trpv6, Ncx1 and Pmca1b in the canine duodenum, kidney and uterus. In Vivo (Athens, Greece), 25(5), 773-780. doi:10.1093/biolreprod/83.s1.371 PubMed ● Google Scholar | ||||
| ||||
Kondratiuk, T. P., Bychenok, S. F., Prishchepa, L. A., Babich, L. G., & Kurskiĭ, M. D. (1986). Vydelenie i kharakteristika fraktsii plazmaticheskikh membran miometriia svin'i [Isolation and characteristics of the plasma membrane fraction from the swine myometrium]. Ukrainskii Biokhimicheskii Zhurnal (1978), 58(4), 50-56. (In Russian) PubMed ● Google Scholar | ||||
| ||||
Kosterin, S., & Tsymbalyuk, O. (2023). Mechanokinetics and power of the spontaneous isotonic contraction of visceral smooth muscles. Series on Biomechanics, 37(3), 43-56. doi:10.7546/sb.07.03.2023 Crossref ● Google Scholar | ||||
| ||||
Kumari, J., & Rathore, M. S. (2020). Na+/K+-ATPase a primary membrane transporter: an overview and recent advances with special reference to algae. The Journal of Membrane Biology, 253(3), 191-204. doi:10.1007/s00232-020-00119-0 Crossref ● PubMed ● Google Scholar | ||||
| ||||
Mourer, M., Regnouf-de-Vains, J. B., & Duval, R. E. (2023). Functionalized calixarenes as promising antibacterial drugs to face antimicrobial resistance. Molecules (Basel, Switzerland), 28(19), 6954. doi:10.3390/molecules28196954 Crossref ● PubMed ● PMC ● Google Scholar | ||||
| ||||
Oslin, K., Reho, J. J., Lu, Y., Khanal, S., Kenchegowda, D., Prior, S. J., & Fisher, S. A. (2022). Tissue-specific expression of myosin phosphatase subunits and isoforms in smooth muscle of mice and humans. American Journal of Physiology-Regulatory, Integrative and Comparative Physiology, 322(4), R281-R291. doi:10.1152/ajpregu.00196.2021 Crossref ● PubMed ● PMC ● Google Scholar | ||||
| ||||
Paclet, M.-H., Rousseau, C. F., Yannick, C., Morel, F., & Coleman, A. W. (2006). An absence of non-specific immune response towards para-sulphonato-calix[n]arenes. Journal of Inclusion Phenomena and Macrocyclic Chemistry, 55(3-4), 353-357. doi:10.1007/s10847-006-9107-0 Crossref ● Google Scholar | ||||
| ||||
Pan, Y. C., Hu, X. Y., & Guo, D. S. (2021). Biomedical applications of calixarenes: state of the art and perspectives. Angewandte Chemie International Edition, 60(6), 2768-2794. doi:10.1002/anie.201916380 Crossref ● PubMed ● Google Scholar | ||||
| ||||
Rathbun, W. B., & Betlach, M. V. (1969). Estimation of enzymically produced orthophosphate in the presence of cysteine and adenosine triphosphate. Analytical Biochemistry, 28(1), 436-445. doi:10.1016/0003-2697(69)90198-5 Crossref ● PubMed ● Google Scholar | ||||
| ||||
Tsymbalyuk, O. V., & Vadzyuk, O. B. (2020). Involvement of KАТР-channels of plasma and mitochondrial membranes in maintaining the contractive function of myometrium of non-pregnant rat uterus. Studia Biologica, 14(2), 3-16. doi:10.30970/sbi.1402.622 Crossref ● Google Scholar | ||||
| ||||
Valadares, J. M. M., Bajaj, S. O., Li, H., Wang, H. L., Silva, S. C., Garcia, I. J. P., Pereira, D. G., Azalim, P., Quintas, L. E. M., Noël, F., Cortes, V. F., O'Doherty, G. A., & Barbosa, L. A. (2021). Cytotoxic effect of carbohydrate derivatives of digitoxigenin involves modulation of plasma membrane Ca2+-ATPase. Journal of Cellular Biochemistry, 122(12), 1903-1914. doi:10.1002/jcb.30150 Crossref ● PubMed ● PMC ● Google Scholar | ||||
| ||||
Valente, R. C., Capella, L. S., Monteiro, R. Q., Rumjanek, V. M., Lopes, A. G., & Capella, M. A. (2003). Mechanisms of ouabain toxicity. The FASEB Journal, 17(12), 1700-1702. doi:10.1096/fj.02-0937fje Crossref ● PubMed ● Google Scholar | ||||
| ||||
Veklich, Т. О., & Kosterin, S. O. (2005). Comparative study of properties of Na+, K+-ATPase and Mg2+-ATPase of the myometrium plasma membrane. The Ukrainian Biochemical Journal, 77(2), 66-75. (In Ukrainian) PubMed ● Google Scholar | ||||
| ||||
Veklich, Т. О., Cherenok, S. О., Tsymbalyuk, О. V., Shkrabak, О. A., Karakhim, S. O., Selihova, A. I., Kalchenko, V. І., & Kosterin, S. O. (2023). A new affine inhibitor of sodium pump thiacalix[4]arene С-1193 increases the intracellular concentration of Ca ions and modifies myometrium contractility. The Ukrainian Biochemical Journal, 95(5), 5-21. doi:10.15407/ubj95.05.005 Crossref | ||||
| ||||
Wray, S. (2015). Insights from physiology into myometrial function and dysfunction. Experimental Physiology, 100(12), 1468-1476. doi:10.1113/ep085131 Crossref ● PubMed ● Google Scholar | ||||
| ||||
Yang, H., Choi, K.-C., Jung, E.-M., An, B.-S., Hyun, S.-H., & Jeung, E.-B. (2013). Expression and regulation of sodium/calcium exchangers, NCX and NCKX, in reproductive tissues: do they play a critical role in calcium transport for reproduction and development? In: L. Annunziato (Ed.), Sodium calcium exchange: a growing spectrum of pathophysiological implications. Advances in experimental medicine and biology (Vol. 961, pp. 109-121), Springer, Boston, MA. doi:10.1007/978-1-4614-4756-6_10 Crossref ● PubMed ● Google Scholar |
Refbacks
- There are currently no refbacks.
Copyright (c) 2025 Olga Tsymbalyuk, Tetyana Veklich, Oleksandr Maliuk, Sergiy Cherenok, Vitaly Kalchenko, Sergiy Kosterin

This work is licensed under a Creative Commons Attribution 4.0 International License.