KINETIC REGULARITIES OF THIACALIX[4]ARENE C-1193 ACTION ON Na+, K+-ATPase ACTIVITY OF THE PLASMA MEMBRANE AND CONTRACTILE ACTIVITY OF THE MYOMETRIUM

Olga Tsymbalyuk, Tetyana Veklich, Oleksandr Maliuk, Sergiy Cherenok, Vitaly Kalchenko, Sergiy Kosterin


DOI: http://dx.doi.org/10.30970/sbi.1901.816

Abstract


Background. +, K+-ATPase (sodium pump) is an electrogenic Са2+-independent Mg2+, Na+, K+-ATP-dependent transporting system of plasma membrane (PM), which conducts active transfer of univalent ions of Na and K and thus maintains their electrochemical gradients, required for normal functioning of the cell. It was proven that in some widesperad pathologies the activity of the sodium pump is disrupted. Therefore, the search for effectors - selective inhibitors and activators that would be able to specifically affect Na+, K+-ATPase, restoring its activity in pathological conditions, is very promising. The aim of this study was to investigate  the action of thiacalix[4]arene С-1193 on the dependence of Nа+, K+-ATPase activity of PM of myometrium cells on the concentration of ATP and Mg ions, as well as on the isotonic contractile activity of the myometrium.
Materials and Methods. The experiments were conducted using outbred white non-pregnant rats. The inhibitory action of thiacalix[4]arene C-1193 (25,27-dibutoxythiacalix[4]arene-bis-hydroxymethylphosphonic acid) on the kinetic traits of Na+, K+-ATPase activity was studied in the experiments, conducted using the suspension of perforated plasma membranes of the myometrium cells. The registration of the contractile acti­vity in the preparations of longitudinal smooth muscles of uterine horns with preserved endothelium was done in the isotonic mode. The study of the contractile activity of muscle preparations was carried out using mechanokinetic analysis methods.
Results. The study demonstrated that while inhibiting Na+, K+-ATPase, thiacalix[4]arene С-1193 did not change the kinetic parameters (Km, nH) of the dependence of the reaction velocity on the substrate concentration. Calix[4]arene C-1193 had practically no action on the affinity between Na+, K+-ATPase and ATP, which demonstrated the absence of competition between the binding centers for ATP and C-1193. There was no effect on the affinity and cooperative action of Mg ions either. Both cases demonstrated a considerable reduction in the maximal velocity of ATP hydrolysis.
It was found that thiacalix[4]arene С-1193 (in the concentration of 10 μM) modulated the isotonic reactions of pluricellular preparations of myometrium, induced via the pathways of electro- and pharmacomechanic coupling. It was also determined that under the effect of С-1193, there was an increase both in the amplitude of contractions and in the mechanokinetic parameters: contractions (ΔLmax, ΔLC and ΔLR) and velocities (VC and VR). The norm-setting for VC and VR regarding the amplitude of contractions at the action of С-1193 resulted in the loss of statistically significant differences between the maximal velocities of the contraction and relaxation phases.
Conclusions. The results of our research indicate that thiacalix[4]arene С-1193, has a non-competitive mechanism of inhibiting Nа+, K+-ATPase activity and has no specific action on Са2+-transporting systems of uterine myocytes.


Keywords


myometrium, Nа+,K+-ATPase, plasma membrane, thiacalix[4]arene С-1193, smooth muscle cells, kinetic traits of ATPase, contractions, mechanokinetic parameters

Full Text:

PDF

References


Amazu, C., Ferreira, J. J., Santi, C. M., & England, S. K. (2020). Sodium channels and transporters in the myometrium. Current Opinion in Physiology, 13, 141-144. doi:10.1016/j.cophys.2019.11.011
CrossrefPubMedPMCGoogle Scholar

Blaustein, M. P., & Hamlyn, J. M. (2024). Sensational site: the sodium pump ouabain-binding site and its ligands. American journal of physiology. Cell Physiology, 326(4), C1120-C1177. doi:10.1152/ajpcell.00273.2023
CrossrefPubMedPMCGoogle Scholar

Bradford, M. M. (1976). A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Analytical Biochemistry, 72, 248-254. doi:10.1016/0003-2697(76)90527-3
CrossrefPubMedGoogle Scholar

Burdyga, V., & Kosterin, S. A. (1991). Kinetic analysis of smooth muscle relaxation. General Physiology and Biophysics, 10(6), 589-598.
PubMedGoogle Scholar

Cherepanov, S. M., Yuhi, T., Iizuka, T., Hosono, T., Ono, M., Fujiwara, H., Yokoyama, S., Shuto, S., & Higashida, H. (2023). Two oxytocin analogs, N-(p-fluorobenzyl) glycine and N-(3-hydroxypropyl) glycine, induce uterine contractions ex vivo in ways that differ from that of oxytocin. PloS One, 18(2), e0281363. doi:10.1371/journal.pone.0281363
CrossrefPubMedPMCGoogle Scholar

Coleman, A. W., Jebors, S., Cecillon, S., Perret, P., Garin, D., Marti-Battle, D. & Moulin, M. (2008). Toxicity and biodistribution of para-sulfonato-calix[4]arene in mice. New Journal of Chemistry, 32, 780-782. doi:10.1039/b718962a
CrossrefGoogle Scholar

Contreras, R. G., Torres-Carrillo, A., Flores-Maldonado, C., Shoshani, L., & Ponce, A. (2024). Na+/K+-ATPase: more than an electrogenic pump. International Journal of Molecular Sciences, 25(11), 6122. doi:10.3390/ijms25116122
CrossrefPubMedPMCGoogle Scholar

Da Silva, E., Lazar, A. N., & Coleman, A. W. (2004). Biopharmaceutical applications of calixarenes. Journal of Drug Delivery Science and Technology, 14(1), 3-20. doi:10.1016/s1773-2247(04)50001-1
CrossrefGoogle Scholar

Gao, X., Luo, F., & Zhao, H. (2021). Cloves regulate Na+-K+-ATPase to exert antioxidant effect and inhibit UVB light-induced skin damage in mice. Oxidative Medicine and Cellular Longevity, 2021, 5197919. doi:10.1155/2021/5197919
CrossrefPubMedPMCGoogle Scholar

Garrett, A. S., Means, S. A., Roesler, M. W., Miller, K. J. W., Cheng, L. K., & Clark, A. R. (2022). Modeling and experimental approaches for elucidating multi-scale uterine smooth muscle electro- and mechano-physiology: a review. Frontiers in Physiology, 13, 1017649. doi:10.3389/fphys.2022.1017649
CrossrefPubMedPMCGoogle Scholar

Grare, M., Mourer, M., Fontanay, S., Regnouf-de-Vains, J. B., Finance, C., & Duval, R. E. (2007). In vitro activity of para-guanidinoethylcalix[4]arene against susceptible and antibiotic-resistant Gram-negative and Gram-positive bacteria. The Journal of Antimicrobial Chemotherapy, 60(3), 575-581. doi:10.1093/jac/dkm244
CrossrefPubMedGoogle Scholar

Kim, J. A., Yang, H., Hwang, I., Jung, E. M., Choi, K. C., & Jeung, E. B. (2011). Expression patterns and potential action of the calcium transport genes Trpv5, Trpv6, Ncx1 and Pmca1b in the canine duodenum, kidney and uterus. In Vivo (Athens, Greece), 25(5), 773-780. doi:10.1093/biolreprod/83.s1.371
PubMedGoogle Scholar

Kondratiuk, T. P., Bychenok, S. F., Prishchepa, L. A., Babich, L. G., & Kurskiĭ, M. D. (1986). Vydelenie i kharakteristika fraktsii plazmaticheskikh membran miometriia svin'i [Isolation and characteristics of the plasma membrane fraction from the swine myometrium]. Ukrainskii Biokhimicheskii Zhurnal (1978), 58(4), 50-56. (In Russian)
PubMedGoogle Scholar

Kosterin, S., & Tsymbalyuk, O. (2023). Mechanokinetics and power of the spontaneous isotonic contraction of visceral smooth muscles. Series on Biomechanics, 37(3), 43-56. doi:10.7546/sb.07.03.2023
CrossrefGoogle Scholar

Kumari, J., & Rathore, M. S. (2020). Na+/K+-ATPase a primary membrane transporter: an overview and recent advances with special reference to algae. The Journal of Membrane Biology, 253(3), 191-204. doi:10.1007/s00232-020-00119-0
CrossrefPubMedGoogle Scholar

Mourer, M., Regnouf-de-Vains, J. B., & Duval, R. E. (2023). Functionalized calixarenes as promising antibacterial drugs to face antimicrobial resistance. Molecules (Basel, Switzerland), 28(19), 6954. doi:10.3390/molecules28196954
CrossrefPubMedPMCGoogle Scholar

Oslin, K., Reho, J. J., Lu, Y., Khanal, S., Kenchegowda, D., Prior, S. J., & Fisher, S. A. (2022). Tissue-specific expression of myosin phosphatase subunits and isoforms in smooth muscle of mice and humans. American Journal of Physiology-Regulatory, Integrative and Comparative Physiology, 322(4), R281-R291. doi:10.1152/ajpregu.00196.2021
CrossrefPubMedPMCGoogle Scholar

Paclet, M.-H., Rousseau, C. F., Yannick, C., Morel, F., & Coleman, A. W. (2006). An absence of non-specific immune response towards para-sulphonato-calix[n]arenes. Journal of Inclusion Phenomena and Macrocyclic Chemistry, 55(3-4), 353-357. doi:10.1007/s10847-006-9107-0
CrossrefGoogle Scholar

Pan, Y. C., Hu, X. Y., & Guo, D. S. (2021). Biomedical applications of calixarenes: state of the art and perspectives. Angewandte Chemie International Edition, 60(6), 2768-2794. doi:10.1002/anie.201916380
CrossrefPubMedGoogle Scholar

Rathbun, W. B., & Betlach, M. V. (1969). Estimation of enzymically produced orthophosphate in the presence of cysteine and adenosine triphosphate. Analytical Biochemistry, 28(1), 436-445. doi:10.1016/0003-2697(69)90198-5
CrossrefPubMedGoogle Scholar

Tsymbalyuk, O. V., & Vadzyuk, O. B. (2020). Involvement of KАТР-channels of plasma and mitochondrial membranes in maintaining the contractive function of myometrium of non-pregnant rat uterus. Studia Biologica, 14(2), 3-16. doi:10.30970/sbi.1402.622
CrossrefGoogle Scholar

Valadares, J. M. M., Bajaj, S. O., Li, H., Wang, H. L., Silva, S. C., Garcia, I. J. P., Pereira, D. G., Azalim, P., Quintas, L. E. M., Noël, F., Cortes, V. F., O'Doherty, G. A., & Barbosa, L. A. (2021). Cytotoxic effect of carbohydrate derivatives of digitoxigenin involves modulation of plasma membrane Ca2+-ATPase. Journal of Cellular Biochemistry, 122(12), 1903-1914. doi:10.1002/jcb.30150
CrossrefPubMedPMCGoogle Scholar

Valente, R. C., Capella, L. S., Monteiro, R. Q., Rumjanek, V. M., Lopes, A. G., & Capella, M. A. (2003). Mechanisms of ouabain toxicity. The FASEB Journal, 17(12), 1700-1702. doi:10.1096/fj.02-0937fje
CrossrefPubMedGoogle Scholar

Veklich, Т. О., & Kosterin, S. O. (2005). Comparative study of properties of Na+, K+-ATPase and Mg2+-ATPase of the myometrium plasma membrane. The Ukrainian Biochemical Journal, 77(2), 66-75. (In Ukrainian)
PubMedGoogle Scholar

Veklich, Т. О., Cherenok, S. О., Tsymbalyuk, О. V., Shkrabak, О. A., Karakhim, S. O., Selihova, A. I., Kalchenko, V. І., & Kosterin, S. O. (2023). A new affine inhibitor of sodium pump thiacalix[4]arene С-1193 increases the intracellular concentration of Ca ions and modifies myometrium contractility. The Ukrainian Biochemical Journal, 95(5), 5-21. doi:10.15407/ubj95.05.005
Crossref

Wray, S. (2015). Insights from physiology into myometrial function and dysfunction. Experimental Physiology, 100(12), 1468-1476. doi:10.1113/ep085131
CrossrefPubMedGoogle Scholar

Yang, H., Choi, K.-C., Jung, E.-M., An, B.-S., Hyun, S.-H., & Jeung, E.-B. (2013). Expression and regulation of sodium/calcium exchangers, NCX and NCKX, in reproductive tissues: do they play a critical role in calcium transport for reproduction and development? In: L. Annunziato (Ed.), Sodium calcium exchange: a growing spectrum of pathophysiological implications. Advances in experimental medicine and biology (Vol. 961, pp. 109-121), Springer, Boston, MA. doi:10.1007/978-1-4614-4756-6_10
CrossrefPubMedGoogle Scholar


Refbacks

  • There are currently no refbacks.


Copyright (c) 2025 Olga Tsymbalyuk, Tetyana Veklich, Oleksandr Maliuk, Sergiy Cherenok, Vitaly Kalchenko, Sergiy Kosterin

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.