FEATURES OF THE SPECIES COMPOSITION BASED ON THE TROPHIC ANALYSIS OF ARTIFICIAL WOODY PLANTATIONS IN THE KRYVYI RIH MINING AND INDUSTRIAL DISTRICT

Maksym Kvitko, Olena Lykholat, Tetyana Lykholat, Mykhailo Holubiev, Yuriy Lykholat


DOI: http://dx.doi.org/10.30970/sbi.1901.807

Abstract


Introduction. The study of the trophic characteristics of the species forming the artificial woody plantations on the anthropogenically altered territories of the Dnipro Steppe is an urgent task of forest protection and horticultural management in the Dnipro Region. Artificial woody plantations of Kryvyi Rih, which are located in contrasting ecological conditions and represent the main varieties of artificial woody and shrub plantations in the region, were chosen as the object of research. These are objects of horticulture, sanitary, water protection and urban forest protection tracts.
Materials and Methods. The following methods were used to achieve the goal and fulfill the tasks of the study: forest taxation; phytocenological; dendrological; recording the dendroflora, determining phytomelioration and recreational functions of tree groups, as well as the vital state of tree vegetation; physiological, leaf surface area, number of leaves on model branches; analytical and statistical methods of processing materials for the analysis of the experimental data.
Results. Woody ecosystems on the territory of the Kryvyi Rih mining and metallurgical region are very unevenly distributed. They are concentrated mainly in river banks, forest protection plantations, and artificial plantations of protective territories of settlements. Forest cover has significant differences in different territories of Kryvyi Rih. It does not reach the optimal level when forests have the most positive effect on the climate, soils, and water resources, mitigate the consequences of erosion processes. Neither does it suffice the needs of an increasing wood production. Creation of a forest seed base of tree species on the basis of selection will ensure a considerable enhancement in both productivity and biological resistance of artificial woody plantations to the climatically and anthropogenically changed conditions in the region.
Conclusions. The type of ecological structure of woody plantations in the study areas is reflected in the duration of the environmental transformation effect of tree vegetation by trophic characteristics (from 45.46 % of mesotrophs and 31.82 % of megatrophs to 4.55 % of oligomesotrophs and oligomegatrophs) on the soil and edaphic conditions of the territory.


Keywords


artificial woody plantations, trophic adaptation mechanisms, the Dnipro Steppe conditions, industrial areas, new forest ecosystems

Full Text:

PDF

References


Ali-Tavakoli-Kaghaz, I., Nakhaei, F., Mosavi, S., & Seghatoleslami, M. (2023). Phenological, morpho-physiological, and biochemical attributes of barberry (Berberis integerrima L.) in different habitats of Iran. Notulae Botanicae Horti Agrobotanici Cluj-Napoca, 51(2), 13089. doi:10.15835/nbha51213089
CrossrefGoogle Scholar

Arabadzhy-Tipenko, L. I. (2020). Ecological and floristic characteristics of Cyanophyceae of Pryazovskyi National Nature Park. Agrology, 3(2), 66-79. doi:10.32819/020009
CrossrefGoogle Scholar

Barker, A.V., Pilbeam, D. J. (2010). Handbook of plant nutrition. Taylor & Francis Group, Boca Raton: CRC Press.
Google Scholar

Bianchi, M. M., Giaché, Y., Irurzún, A., Gogorza, C., Fontana, S., & Gieseke, T. (2023). The effects of climate, natural disturbances, and human occupation on the rainforest boundary at the eastern foothills of Northern Patagonian Andes since the Late Glacial period. Quaternary Science Reviews, 306, 108040. doi:10.1016/j.quascirev.2023.108040
CrossrefGoogle Scholar

Bobko, A. M. (2018). Forest resources: tax indicators of their accounting and use in the system of economics of forestry management. Economy of Ukraine, 4, 76-85. (In Ukraine)
Google Scholar

Brown, K. E., & Koenig, D. (2022). On the hidden temporal dynamics of plant adaptation. Current Opinion in Plant Biology, 70, 102298. doi:10.1016/j.pbi.2022.102298
CrossrefPubMedGoogle Scholar

Bulmer, M, (2014). Principles of statistics. New York, USA: Dover Publications Inc. Retrieved from https://search.worldcat.org/title/principles-of-statistics/oclc/802571746
Google Scholar

Carlson, A. R., Radeloff, V. C., Helmers, D. P., Mockrin, M. H., Hawbaker, T. J., & Pidgeon, A. (2023). The extent of buildings in wildland vegetation of the conterminous U.S. and the potential for conservation in and near National Forest private inholdings. Landscape and Urban Planning, 237, 104810. doi:10.1016/j.landurbplan.2023.104810
CrossrefGoogle Scholar

Chand, S., Indu, B., Chauhan, J., Kumar, B., Kumar, V., Dey, P., Mishra, U. N., Sahu, C., & Singhal, R. K. (2021). Plant-environment interaction in developing crop species resilient to climate change. In: T. Aftab, & K. R. Hakeem (Eds.), Plant abiotic stress physiology (Vol. 2, 1-24). New York: Apple Academic Press. doi:10.1201/9781003180579-1
CrossrefGoogle Scholar

Chen, C., Li, J., Zhao, Y., Goerlandt, F., Reniers, G., & Yiliu, L. (2023). Resilience assessment and management: a review on contributions on process safety and environmental protection. Process Safety and Environmental Protection, 170, 1039-1051. doi:10.1016/j.psep.2022.12.072
CrossrefGoogle Scholar

Chu, L., Grafton, R. Q., & Nelson, H. (2023). Accounting for forest fire risks: global insights for climate change mitigation. Mitigation and Adaptation Strategies for Global Change, 28(8), 48. doi:10.1007/s11027-023-10087-0
CrossrefGoogle Scholar

Danylchuk, O., Danylchuk, N., Boyko, L., & Yukhymenko, Y. (2023). The influence of heavy metal pollution on the pigment content in the assimilation apparatus of poplar cultivars in the conditions of the Iron Ore region. Ekológia (Bratislava), 42(4), 319-326. doi:10.2478/eko-2023-0035
CrossrefGoogle Scholar

Danylchuk, О., Gryshko, V., Boyko, L., & Danylchuk, N. (2024). Accumulation of heavy metals in the vegetative organs of poplars under their joint introduction to the soil. Studia Biologica, 18(4), 109-124. doi:10.30970/sbi.1804.798
CrossrefGoogle Scholar

Ding, C., Meng, Y., Huang, W., & Xie, Q. (2023). Varying effects of tree cover on relationships between satellite-observed vegetation greenup date and spring temperature across Eurasian boreal forests. Science of The Total Environment, 899, 165650. doi:10.1016/j.scitotenv.2023.165650
CrossrefPubMedGoogle Scholar

Grafton, R. Q., Chu, H. L., Nelson, H., & Bonnis, G. (2021). A global analysis of the cost-efficiency of forest carbon sequestration. Environment Working Paper. 185. Retrieved from https://one.oecd.org/document/ENV/WKP(2021)17/En/pdf
Google Scholar

Hancock, G. R., Duque, J. M., & Willgoose, G. R. (2019). Geomorphic design and modelling at catchment scale for best mine rehabilitation - the Drayton mine example (New South Wales, Australia). Environmental Modelling & Software, 114, 140-151. doi:10.1016/j.envsoft.2018.12.003
CrossrefGoogle Scholar

Kim, N., Watmough, S. A., & Yan, N. D. (2022). Wood ash amendments as a potential solution to widespread calcium decline in eastern Canadian forests. Environmental Reviews, 30(4), 485-500. doi:10.1139/er-2022-0017
CrossrefGoogle Scholar

Kobylynska, Т. V., & Huseva, N. Yu. (2020). A statistical study of the forestry in Ukraine. Statistics of Ukraine, 89(2-3), 12-21. doi:10.31767/su.2-3(89-90)2020.02-03.02
CrossrefGoogle Scholar

Kvitko, M., Savosko, V., Kozlovskaya, I., Lykholat, Y., Podolyak, A., Hrygoruk, I., & Karpenko, A. (2021). Woody artificial plantations as a significant factor of the sustainable development at mining & metallurgical area. E3S Web of Conferences, 280, 06005. doi:10.1051/e3sconf/202128006005
CrossrefGoogle Scholar

Kvitko, M. O., Savosko, V. M., Lykholat, Y. V., Holubiev, M. I., Hrygoruk, I. P., Lykholat, O. A., Kofan, I. M., Chuvasova, N. O., Yevtushenko, E. O., Lykholat, T. Y., Marenkov, O. M., & Ovchinnikova, Y. Y. (2022). Assessment of the ecological hybrid threat to industrial area in connection with the vital state of artificial woody plantations in Kryvyi Rih District (Ukraine). IOP Conference Series: Earth and Environmental Science, 1049(1), 012046. doi:10.1088/1755-1315/1049/1/012046
CrossrefGoogle Scholar

Jonathan, L., Adeline, F., Andyne, L., Céline, P., & Hugues, C. (2022). Prediction of forest nutrient and moisture regimes from understory vegetation with random forest classification models. Ecological Indicators, 144, 109446. doi:10.1016/j.ecolind.2022.109446
CrossrefGoogle Scholar

Lykholat, Y. V., Didur, O. O., Drehval, O. A., Khromykh, N. O., Sklyar, T. V., Lykholat, T. Y., Liashenko, O. V., & Kovalenko, I. M. (2022). Endophytic community of Chaenomeles speciosa fruits: screening for biodiversity and antifungal activity. Regulatory Mechanisms in Biosystems, 13(2), 130-136. doi:10.15421/022218
CrossrefGoogle Scholar

Map of geobotanical zoning of Ukraine. Retrieved from https://geomap.land.kiev.ua/zoning-5.html

Maus, V., Giljum, S., Gutschlhofer, J., da Silva, D. M., Probst, M., Gass, S. L. B., Luckeneder, S., Lieber, M., & McCallum, I. (2020). A global-scale data set of mining areas. Scientific Data, 7(1), 289. doi:10.1038/s41597-020-00624-w
CrossrefPubMedPMCGoogle Scholar
McDonald, J. H. (2014). Handbook of biological statistics. University of Delaware, USA: Sparky house publishing. Retrieved from https://www.biostathandbook.com
Google Scholar

Physical and geographic zoning of Ukraine. Retrieved from https://geomap.land.kiev.ua/zoning-1.html

Polishchuk, A. I., & Antonyak, H. L. (2022). Dynamics of foliar concentrations of photosynthetic pigments in woody and herbaceous plant species in the territory of an industrial city. Studia Biologica, 16(2), 29-40. doi:10.30970/sbi.1602.684
CrossrefGoogle Scholar

Pretzsch, H., del Río, M., Arcangeli, C., Bielak, K., Dudzinska, M., Forrester, D. I., Klädtke, J., Kohnle, U., Ledermann, T., Matthews, R., Nagel, J., Nagel, R., Ningre, F., Nord-Larsen, T., & Biber, P. (2023). Forest growth in Europe shows diverging large regional trends. Scientific Reports, 13(1), 15373. doi:10.1038/s41598-023-41077-6
CrossrefPubMedPMCGoogle Scholar

Sabatini, F. M., Bluhm, H., Kun, Z., Aksenov, D., Atauri, J. A., Buchwald, E., … Kuemmerle, T. (2021). European primary forest database v2.0. Scientific Data, 8(1), 220. doi:10.1038/s41597-021-00988-7
CrossrefPubMedPMCGoogle Scholar

Savosko, V., Komarova, I., Lykholat, Y., Yevtushenko, E., & Lykholat, T. (2021). Predictive model of heavy metals inputs to soil at Kryvyi Rih District and its use in the training for specialists in the field of biology. Journal of Physics: Conference Series, 1840(1), 012011. doi:10.1088/1742-6596/1840/1/012011
CrossrefGoogle Scholar

Seliger, A., Ammer, C., Kreft, H., & Zerbe, S. (2023). Changes of vegetation in coniferous monocultures in the context of conversion to mixed forests in 30 years - implications for biodiversity restoration. Journal of Environmental Management, 343, 118199. doi:10.1016/j.jenvman.2023.118199
CrossrefPubMedGoogle Scholar

Shao, J., Habib, A., & Fei, S. (2023). Semantic segmentation of uav lidar data for tree plantations. The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, XLVIII-1/W2-2023, 1901-1906. doi:10.5194/isprs-archives-xlviii-1-w2-2023-1901-2023
CrossrefGoogle Scholar

Singh, A. K., Zhu, X., Chen, C., Yang, B., Pandey, V. C., Liu, W., & Singh, N. (2023). Investigating the recovery in ecosystem functions and multifunctionality after 10 years of natural revegetation on fly ash technosol. Science of The Total Environment, 875, 162598. doi:10.1016/j.scitotenv.2023.162598
CrossrefPubMedGoogle Scholar

Solomakha, N. G., Korotkova, T. M., Sydorenko, S. V., Sydorenko, S. G., Yurchenko, V. А., & Tupchii, O. M. (2021). Species composition and forestry characteristics of field shelterbelts established by G. M. Vysotsky in Ukrainian ravine steppe. Forestry and Forest Melioration, 139, 52-60. doi:10.33220/1026-3365.139.2021.52 (In Ukrainian)
CrossrefGoogle Scholar

Sparks, D. L. (2003). Environmental soil chemistry. San Diego: Academic Press.
CrossrefGoogle Scholar

Stanturf, J. A., Callaham, M. A., & Madsen, P. (2021). Soils are fundamental to landscape restoration. In: J. A. Stanturf & M. A. Callaham (Eds.), Soils and landscape restoration (pp. 1-37). New York: Academic Press. doi:10.1016/b978-0-12-813193-0.00001-1
CrossrefGoogle Scholar

Tiziani, R., Pranter, M., Valentinuzzi, F., Pii, Y., Luigimaria, B., Cesco, S., & Mimmo, T. (2023). Unraveling plant adaptation to single and combined nutrient deficiencies in a dicotyledonous and a monocotyledonous plant species. Plant Science, 335, 111793. doi:10.1016/j.plantsci.2023.111793
CrossrefPubMedGoogle Scholar

Vacek, Z., Vacek, S., & Cukor, J. (2023). European forests under global climate change: review of tree growth processes, crises and management strategies. Journal of Environmental Management, 332, 117353. doi:0.1016/j.jenvman.2023.117353
CrossrefPubMedGoogle Scholar

Wang, L., Cromsigt, J. P. G. M., Buitenwerf, R., Lundgren, E. J., Li, W., Bakker, E. S., & Svenning, J. C. (2023). Tree cover and its heterogeneity in natural ecosystems is linked to large herbivore biomass globally. One Earth, 6(12), 1759-1770. doi:10.1016/j.oneear.2023.10.007
CrossrefGoogle Scholar

West, P. W. (2009). Tree and forest measurement. Berlin Heidelberg: Springer-Verlag. doi:10.1007/978-3-540-95966-3
CrossrefGoogle Scholar

Wu, B., Peng, H., Sheng, M., Luo, H., Wang, X., Zhang, R., Xu, F., & Xu, H. (2021). Evaluation of phytoremediation potential of native dominant plants and spatial distribution of heavy metals in abandoned mining area in Southwest China. Ecotoxicology and Environmental Safety, 220, 112368. doi:10.1016/j.ecoenv.2021.112368
CrossrefPubMedGoogle Scholar


Refbacks

  • There are currently no refbacks.


Copyright (c) 2025 Maksym Kvitko, Olena Lykholat, Tetyana Lykholat, Mykhailo Holubiev, Yuriy Lykholat

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.