MICROPROPAGATION OF PLUM ROOTSTOCK (PRUNUS DOMESTICA L.) OF ‘WAVIT’ VARIETY

Stanislav Baziuk, Myroslava Kobyletska


DOI: http://dx.doi.org/10.30970/sbi.1901.805

Abstract


Background. ‘Wavit’ is a valuable Plum rootstock hybrid of Prunus domestica (P. cerasifera × P. spinosa). It reduces tree vigor and exhibits a high winter hardiness, increases fruit size, shows good compatibility with all types of plums and apricots, and consistently produces high yields. The aim of this study is to propose a suitable in vitro propagation protocol for the ‘Wavit’ rootstock. This includes micropropagation based on the analysis of two base media for shoot proliferation: Driver Kyniyuki Walnut (DKW), and Quorin & Lepoivre (QL) with different combinations of plant growth regulators and two forms of iron chelate. Additionally, the study explores an in vitro protocol for rooting with different concentrations of Indole-3-butyric acid (IBA), and an ex vitro adaptation period.
Material and Methods. Research was conducted by cultivation under in vitro conditions of ‘Wavit’explants with following stages: shoot proliferation was exmained by using two basal media DKW, and QL supplemented with Walkey vitamins and diffe­rent contents of IBA, meta-topolin (MT), 6-benzylaminopurine (6-BAP) and iron chelate: ferric-sodium salt of ethylenediaminetetraacetic acid (FeNaEDTA) and ethylenediamine di-2-hydroxyphenyl acetate ferric (FeEDDHA). After 4 weeks of cultivation shoot length, number of shoots, % of vitrification and multiplication rate were measured.
Rooting medium was consistent with ½ Mourashige & Skoog (MS) medium supplemented with Walkey vitamins and different concentrations of Indole-3-butyric acid. After 4 weeks of cultivation shoot length, root length, number of roots and % of rooted nodal segments were measured.
Acclimatization was conducted in the greenhouse. For the experiments, shoots were divided into 3 groups: unrooted, 1–3 roots, >3 roots, and cultivated for a month after which survival rate was measured.
Results. The research involved the cultivation of ‘Wavit’ explants under in vitro conditions, comprising several stages. At the stage of shoot proliferation after 4 weeks of cultivation, the highest value with a significant difference in shoot length was found in variants DKW 0.5 MT, 0.1 IBA, FeNaEDTA; DKW 0.5 MT, 0.5 BAP, 0.1 IBA, FeNaEDTA; DKW 0.5 MT, 0.5 BAP, 0.1 IBA, FeEDDHA; however, the highest number of vitrified shoots was observed in the last two listed variants. A significant difference was also found in the multiplication coefficient in the variant DKW 0.5 MT, 0.5 BAP, 0.1 IBA, FeEDDHA, which was the lowest among all DKW medium variants.
Subsequently, the data obtained at the rooting stage showed dependency on root formation with increase of IBA concentration in nutrient media. Addition of 1,0, 1,25 and 1.5 mg/L significantly increased percentage of rooted shoots, number of roots and root length, however 1.5 mg/L decreased the shoot length of the explants.
After 1 month of acclimatization, only 25 % of the group without root survived, the survival rate of groups with 1–3 roots and more than 3 roots was 87.5 % and 92 % respectively.
Conclusions. The present study describes a standard in vitro protocol for the mass propagation of a valuable plum ‘Wavit’ rootstock from stem nodal segments. Driver Kyniyuki Walnut medium supplemented with 0.5 mg/L meta-topolin, or with 0.5 mg/L meta-topolin and 0.1 mg/L indole-3-butyric acid with FeNaEDHHA, showed the overall increased performance during shoot proliferation. For the rooting stage, ½ Mourashige & Skoog with indole-3-butyric acid at concentrations of 1.0 and 1.25 mg/L demonstrated better results. Additionally, we observed the advantage of obtaining rooted plant material before the acclimatization stage, which significantly increased the survival rate of plants.


Keywords


Prunus sp., in vitro propagation, plant growth regulators, biostimulators, media composition, adaptation

Full Text:

PDF

References


Centre for the Promotion of Imports from developing countries (CBI). (2020). The European Market Potential for Fresh Plums and Other Stone Fruit. CBI: The Hague, The Netherlands. Retrieved from https://www.cbi.eu

DeJong, T. M., Johnson, R. S., Doyle, J. F., Weibel, A., Solari, L., Marsal, J., Basile, B., Ramming, D., & Bryla, D. (2004). Growth, yield and physiological behavior of size-controlling peach rootstocks developed in California. Acta Horticulturae, 658, 449-455. doi:10.17660/actahortic.2004.658.66
CrossrefGoogle Scholar

Driver, J. A., & Kuniyuki, A. H. (1984). In vitro propagation of Paradox walnut rootstock. HortScience, 19(4), 507-509. doi:10.21273/hortsci.19.4.507
CrossrefGoogle Scholar

Druart, P. (1992). In vitro culture and micropropagation of plum (Prunus spp.). In: Y. P. S. Bajaj (Ed.), High-tech and micropropagation II. Biotechnology in agriculture and forestry (Vol 18, pp. 279-303). Springer, Berlin, Heidelberg. doi:10.1007/978-3-642-76422-6_15
CrossrefGoogle Scholar

Druart, P., & Gruselle, R. (1986). Plum (Prunus domestica). In: Y. P. S. Bajaj (Ed.), Trees I. Biotechnology in agriculture and forestry (Vol. 1, pp. 130-154). Springer, Berlin, Heidelberg. doi:10.1007/978-3-642-70576-2_9
CrossrefGoogle Scholar

Gago, D., Sánchez, C., Aldrey, A., Christie, C. B., Bernal, M. Á., & Vidal, N. (2022). Micropropagation of plum (Prunus domestica L.) in bioreactors using photomixotrophic and photoautotrophic Conditions. Horticulturae, 8(4), 286. doi:10.3390/horticulturae8040286
CrossrefGoogle Scholar

Hazarika, B. N., Teixeira da Silva, J. A., & Talukdar, A. (2006). Effective acclimatization of in vitro cultured plants: methods, physiology and genetics. In: J. A. Teixeira da Silva (Ed.), Floriculture, ornamental and plant biotechnology (Vol. 2, pp. 427-438). UK: Global Science Books.
Google Scholar

Hoza, D., Delian, E., Asanica, A., & Hoza, G. (2015). Research regarding the intensity of certain physiological processes for peach varieties within high density plantations. Agriculture and Agricultural Science Procedia, 6, 165-170. doi:10.1016/j.aaspro.2015.08.054
CrossrefGoogle Scholar

Kang, Y., Lee, K., Choi, J., Komakech, R., Min, J., Ju, S., Kim, S. W., Youn, C., Kim, Y.-G., & Moon, B. C. (2018). Maximizing seedling and root tuber production in Polygonum multiflorum for use in ethnomedicine. South African Journal of Botany, 119, 119-131. doi:10.1016/j.sajb.2018.08.016
CrossrefGoogle Scholar

Kazemi, F., & Mohorko, R. (2017). Review on the roles and effects of growing media on plant performance in green roofs in world climates. Urban Forestry & Urban Greening, 23, 13-26. doi:10.1016/j.ufug.2017.02.006
CrossrefGoogle Scholar

Komakech, R., Kim, Y.-G., Kim, W. J., Omujal, F., Yang, S., Moon, B. C., Okello, D., Rahmat, E., Kyeyune, G. N., Matsabisa, M. G., & Kang, Y. (2020). A micropropagation protocol for the endangered medicinal tree Prunus africana (Hook f.) Kalkman: genetic fidelity and physiological parameter assessment. Frontiers in Plant Science, 11, 548003. doi:10.3389/fpls.2020.548003
CrossrefPubMedPMCGoogle Scholar

Lawson, J. D., Bridges, W. C., & Adelberg, J. W. (2023). IBA delivery technique and media salts affected in vitro rooting and acclimatization of eight Prunus genotypes. Plants, 12(2), 289. doi:10.3390/plants12020289
CrossrefPubMedPMCGoogle Scholar

Martin, K. P., Zhang, C.-L., Slater, A., & Madassery, J. (2006). Control of shoot necrosis and plant death during micro-propagation of banana and plantains (Musa spp.). Plant Cell, Tissue and Organ Culture, 88(1), 51-59. doi:10.1007/s11240-006-9177-0
CrossrefGoogle Scholar

Mayer, N. A., Ueno, B., Rickes, T. B., & de Resende, M. V. L. A. (2020). Cloning of rootstock selections and Prunus spp. cultivars by softwood cuttings. Scientia Horticulturae, 273, 109609. doi:10.1016/j.scienta.2020.109609
CrossrefGoogle Scholar

Mestre, L., Reig, G., Betrán, J. A., Pinochet, J., & Moreno, M. Á. (2015). Influence of peach-almond hybrids and plum-based rootstocks on mineral nutrition and yield characteristics of 'Big Top' nectarine in replant and heavy-calcareous soil conditions. Scientia Horticulturae, 192, 475-481. doi:10.1016/j.scienta.2015.05.020
CrossrefGoogle Scholar

Murashige, T., & Skoog, F. (1962). A revised medium for rapid growth and bio assays with tobacco tissue cultures. Physiologia Plantarum, 15(3), 473-497. doi:10.1111/j.1399-3054.1962.tb08052.x
CrossrefGoogle Scholar

Murri, G., Massetani, F., Giusti, S., Funari, A., & Neri, D. (2013). Yield and fruit quality of 'Fortune' plum grafted on 17 rootstocks in replant soil conditions of Central Italy. Acta Horticulturae, 985, 121-126. doi:10.17660/actahortic.2013.985.15
CrossrefGoogle Scholar

Nanda, A., Mohapatra, B. B., Mahapatra, A. P. K., Mahapatra, A. P. K., & Mahapatra, A. P. K. (2021). Multiple comparison test by Tukey's honestly significant difference (HSD): do the confident level control type I error. International Journal of Statistics and Applied Mathematics, 6(1), 59-65. doi:10.22271/maths.2021.v6.i1a.636
CrossrefGoogle Scholar

Nezami, S. R., Yadollahi, A., Hokmabadi, H., & Eftekhari, M. (2015). Control of shoot tip necrosis and plant death during in vitro multiplication of Pistachio rootstock UCB1 (Pistacia integrima × P. atlantica). Journal of Nuts, 6(1), 27-35.
Google Scholar

Pospíšilová, J., Tichá, I., Kadleček, P., Haisel, D., & Plzáková, Š. (1999). Acclimatization of micropropagated plants to ex vitro conditions. Biologia Plantarum, 42(4), 481-497. doi:10.1023/a:1002688208758
CrossrefGoogle Scholar

Quambusch, M., Gruß, S., Pscherer, T., Winkelmann, T., & Bartsch, M. (2017). Improved in vitro rooting of Prunus avium microshoots using a dark treatment and an auxin pulse. Scientia Horticulturae, 220, 52-56. doi:10.1016/j.scienta.2017.03.020
CrossrefGoogle Scholar

Quoirin, M., & Lepoivre, P. (1977). Improved media for in vitro culture of Prunus sp. Acta Horticulturae, 78, 437-442. doi:10.17660/actahortic.1977.78.54
CrossrefGoogle Scholar

Pincelli-Souza, R. P., Tillmann, M., Esler, M., Alves, C. C. D., & Cohen, J. D. (2018). Hybrid hazelnut: micropropagation, rooting and acclimatization. Acta Horticulturae, 1191, 113-120. doi:10.17660/actahortic.2018.1191.16
CrossrefGoogle Scholar

Prokopenko, O. (Ed.). (2023). Statystychnyi zbirnyk "Roslynnytstvo Ukrainy" za 1990-2022 rr. [Statistical collection "Crop Production of Ukraine" for 1990-2022]. Kyiv: State Statistics Service of Ukraine. (In Ukrainian)

Ruzic, D., Vujović, T., & Cerovic, R. (2012). In vitro preservation of autochthonous plum genotypes. Bulgarian Journal of Agricultural Science, 18, 55-62.
Google Scholar

Sadeghi, F., Yadollahi, A., Kermani, M. J., & Eftekhari, M. (2015). Optimizing culture media for in vitro proliferation and rooting of Tetra (Prunus empyrean 3) rootstock. Journal of Genetic Engineering & Biotechnology, 13, 19-23. doi:10.1016/j.jgeb.2014.12.006
CrossrefPubMedPMCGoogle Scholar

Stefanova, B., Dragoyski, K., & Dinkova, H. (2009). Reaction of some rootstocks for plums to soil and climatic conditions of Troyan. Acta Horticulturae, 825, 435-440. doi:10.17660/actahortic.2009.825.68
CrossrefGoogle Scholar

Vujović, T., Jevremović, D., Marjanović, T., & Glišić, I. (2020). In vitro propagation and medium-term conservation of autochthonous plum cultivar "Crvena Ranka". Acta Agriculturae Serbica, 25(50), 141-147. doi:10.5937/aaser2050141v
CrossrefGoogle Scholar

Walkey, D. G. (1972). Production of apple plantlets from axillary-bud meristems. Canadian Journal of Plant Science, 52(6), 1085-1087. doi:10.4141/cjps72-186
CrossrefGoogle Scholar

Wiszniewska, A., Nowak, B., Kołton, A., Sitek, E., Grabski, K., Dziurka, M., Długosz-Grochowska, O., Dziurka, K., & Tukaj, Z. (2016). Rooting response of Prunus domestica L. microshoots in the presence of phytoactive medium supplements. Plant Cell, Tissue and Organ Culture, 125(1), 163-176. doi:10.1007/s11240-015-0937-6
CrossrefGoogle Scholar

Wolella, E. K. (2017). Surface sterilization and in vitro propagation of Prunus domestica L. cv. Stanley using axillary buds as explants. Journal of Biotech Research, 8, 18-26.
Google Scholar

Yaremko, N. O., Medvedyeva, T. V., Natalchuk, T. A., Udovychenko, K. M., & Zapolsky, Y. S. (2023). Propagation and rooting of rootstocks for plum group crops in vitro. Horticulture: Interdepartment Subject Scientific Collection, 78, 120-127. doi:10.35205/0558-1125-2023-78-120-127 (In Ukrainian)
Crossref

Yordanov, A., Tabakov, S., & Kaymakanov, P. (2015). Comparative study of Wavit® rootstock with two plum and two apricot cultivars in nursery. Journal of Agricultural Sciences, Belgrade, 60(2), 159-168. doi:10.2298/jas1502159y
CrossrefGoogle Scholar


Refbacks

  • There are currently no refbacks.


Copyright (c) 2025 Stanislav Baziuk, Myroslava Kobyletska

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.