ASSESSING THE BINDING AFFINITY OF GLUCOCORTICOIDS TO THE SARS-CoV-2 SPIKE PROTEIN – ANGIOTENSIN-CONVERTING ENZYME 2 COMPLEX: A MOLECULAR DOCKING SIMULATION STUDY

Nataliia Khmil, Anna Shestopalova, Volodymyr Kolesnikov


DOI: http://dx.doi.org/10.30970/sbi.1903.835

Abstract


Background. SARS-CoV-2 has been identified as the causative agent of COVID-19. Viral infection occurs through the interaction of the viral spike protein (S protein) with the host’s angiotensin-converting enzyme 2 (ACE2). In moderate and severe cases of COVID-19, the therapeutic benefits of glucocorticoids are attributed to their ability to mitigate immune-mediated lung injury and suppress the cytokine storm. This study aims to evaluate the binding affinity of glucocorticoids to the S protein–ACE2 complex in two SARS-CoV-2 variants: the wild-type Wuhan strain and the JN.1 subvariant of Omicron, to identify potential glucocorticoid binding sites and the amino acid residues involved in ligand interactions.
Materials and Methods. Two crystal structures of the S protein–ACE2 complexes (PDB IDs: 6M0J and 8Y18 from the Protein Data Bank) were selected as docking targets. Molecular docking was performed to assess the binding affinity of dexamethasone (DEX), methylprednisolone (Medrol), and triamcinolone (TAC) to the S protein–ACE2 complex. Docking results were visualized using PyMol 2.5. The protein-ligand interaction profiler (PLIP) was employed to identify non-covalent interactions between proteins and ligands. The root mean square fluctuation (RMSF) of amino acid residue was quantified using CABS-flex 2.0 software.
Results and Discussion. Using a molecular docking approach, it has been demon­strated that DEX, Medrol, and TAC form energetically favorable interactions with both the 6M0J and 8Y18 structures, exhibiting low binding energy scores: 6M0J-DEX -8.0 kcal/mol; 6M0J-Medrol -7.8 kcal/mol; 6M0J-TAC -8.3 kcal/mol; 8Y18-DEX -8.4 kcal/mol; 8Y18-Medrol -8.3 kcal/mol; 8Y18-TAC -8.7 kcal/mol. However, the binding affinities of these complexes differ due to mutations in the S protein, which alter the polarity distribution of its amino acid residues, particularly their ability to form hydrogen bonds.
Conclusion. Studying the binding parameters of DEX, Medrol, and TAC with the S protein–ACE2 complex is essential, particularly given SARS-CoV-2’s capacity for rapid mutation. Certain mutations can alter binding sites, potentially influencing drug efficacy. Docking studies that analyze the energetic and structural characteristics of glucocorticoid binding pockets on the S protein–ACE2 complex can help predict how molecular interactions may change as the virus mutates.


Keywords


SARS-CoV-2, spike protein, angiotensin-converting enzyme 2, glucocorticoids, molecular docking, health care

Full Text:

PDF

References


Andersen, K. G., Rambaut, A., Lipkin, W. I., Holmes, E. C., & Garry, R. F. (2020). The proximal origin of SARS-CoV-2. Nature Medicine, 26(4), 450-452. doi:10.1038/s41591-020-0820-9
CrossrefPubMedPMCGoogle Scholar

Elmaaty, A. A., Alnajjar, R., Hamed, M. I. A., Khattab, M., Khalifa, M. M., & Al-Karmalawy, A. A. (2021). Revisiting activity of some glucocorticoids as a potential inhibitor of SARS-CoV-2 main protease: theoretical study. RSC Advances, 11(17), 10027-10042. doi:10.1039/d0ra10674g
CrossrefPubMedPMCGoogle Scholar

Fan, Y., Li, X., Zhang, L., Wan, S., Zhang, L., & Zhou, F. (2022). SARS-CoV-2 Omicron variant: recent progress and future perspectives. Signal Transduction and Targeted Therapy, 7(1), 141. doi:10.1038/s41392-022-00997-x
CrossrefPubMedPMCGoogle Scholar

Gobeil, S. M. C., Henderson, R., Stalls, V., Janowska, K., Huang, X., May, A., ... & Acharya, P. (2022). Structural diversity of the SARS-CoV-2 Omicron spike. Molecular Cell, 82(11), 2050-2068.e6. doi:10.1016/j.molcel.2022.03.028
CrossrefPubMedPMCGoogle Scholar

Gorkhali, R., Koirala, P., Rijal, S., Mainali, A., Baral, A., & Bhattarai, H. K. (2021). Structure and function of major SARS-CoV-2 and SARS-CoV proteins. Bioinformatics and Biology Insights, 15, 11779322211025876. doi:10.1177/11779322211025876
CrossrefPubMedPMCGoogle Scholar

Huang, Y., Yang, C., Xu, X. F., Xu, W., & Liu, S. W. (2020). Structural and functional properties of SARS-CoV-2 spike protein: potential antivirus drug development for COVID-19. Acta Pharmacologica Sinica, 41(9), 1141-1149. doi:10.1038/s41401-020-0485-4
CrossrefPubMedPMCGoogle Scholar

Kakavandi, S., Zare, I., VaezJalali, M., Dadashi, M., Azarian, M., Akbari, A., Ramezani Farani, M., Zalpoor, H., & Hajikhani, B. (2023). Structural and non-structural proteins in SARS-CoV-2: potential aspects to COVID-19 treatment or prevention of progression of related diseases. Cell Communication and Signaling, 21(1), 110. doi:10.1186/s12964-023-01104-5
CrossrefPubMedPMCGoogle Scholar

Kaku, Y., Okumura, K., Padilla-Blanco, M., Kosugi, Y., Uriu, K., Hinay, A. A., Chen, L., Plianchaisuk, A., Kobiyama, K., Ishii, K. J., Zahradnik, J., Ito, J., & Sato, K. (2024). Virological characteristics of the SARS-CoV-2 JN.1 variant. The Lancet Infectious Diseases, 24(2), e82. doi:10.1016/s1473-3099(23)00813-7
CrossrefPubMedGoogle Scholar

Khmil, N. V., Kolesnikov, V. G., & Boiechko-Nemovcha, A. O. (2025). Binding characteristics of systemic glucocorticoids to the SARS-CoV-2 spike glycoprotein: in silico evaluation. Low Temperature Physics, (51), 96-103. doi:10.1063/10.0034652
CrossrefGoogle Scholar

Khmil, N. V., Shestopalova, A. V., Kolesnikov, V. G., & Boiechko-Nemovcha, A. O. (2024). Identification of potential corticosteroid binding sites on the SARS CoV-2 main protease Mpro - in silico docking study. Biophysical Bulletin, (51), 53-63. doi:10.26565/2075-3810-2024-51-04
CrossrefGoogle Scholar

Kurcinski, M., Oleniecki, T., Ciemny, M. P., Kuriata, A., Kolinski, A., & Kmiecik, S. (2019). CABS-flex standalone: a simulation environment for fast modeling of protein flexibility. Bioinformatics, 35(4), 694-695. doi:10.1093/bioinformatics/bty685
CrossrefPubMedPMCGoogle Scholar

Lan, J., Ge, J., Yu, J., Shan, S., Zhou, H., Fan, S., Zhang, Q., Shi, X., Wang, Q., Zhang, L., & Wang, X. (2020). Structure of the SARS-CoV-2 spike receptor-binding domain bound to the ACE2 receptor. Nature, 581(7807), 215-220. doi:10.1038/s41586-020-2180-5
CrossrefPubMedGoogle Scholar

Li, L., Shi, K., Gu, Y., Xu, Z., Shu, C., Li, D., Sun, J., Cong, M., Li, X., Zhao, X., Yu, G., Hu, S., Tan, H., Qi, J., Ma, X., Liu, K., & Gao, G. F. (2024). Spike structures, receptor binding, and immune escape of recently circulating SARS-CoV-2 Omicron BA.2.86, JN.1, EG.5, EG.5.1, and HV.1 sub-variants. Structure, 32(8), 1055-1067.e6. doi:10.1016/j.str.2024.06.012
CrossrefPubMedGoogle Scholar

Lomoio, U., Puccio, B., Tradigo, G., Guzzi, P. H., & Veltri, P. (2023). SARS-CoV-2 protein structure and sequence mutations: evolutionary analysis and effects on virus variants. PloS One, 18(7), e0283400. doi:10.1371/journal.pone.0283400
CrossrefPubMedPMCGoogle Scholar

Ma, W., Yang, J., Fu, H., Su, C., Yu, C., Wang, Q., de Vasconcelos, A. T. R., Bazykin, G. A., Bao, Y., & Li, M. (2022). Genomic perspectives on the emerging SARS-CoV-2 Omicron variant. Genomics, Proteomics & Bioinformatics, 20(1), 60-69. doi:10.1016/j.gpb.2022.01.001
CrossrefPubMedPMCGoogle Scholar

Mishra A., Abul Qais, F., Pathak, Y., Camps, I., & Tripathi, V. (2023). Triamcinolone as a potential inhibitor of SARS-CoV-2 main protease and cytokine storm: an in-silico study. Letters in Drug Design & Discovery, 20(9), 1230-1242. doi:10.2174/1570180819666220401142351
CrossrefGoogle Scholar

Okoye, I. S., Xu, L., Walker, J., & Elahi, S. (2020). The glucocorticoids prednisone and dexamethasone differentially modulate T cell function in response to anti-PD-1 and anti-CTLA-4 immune checkpoint blockade. Cancer Immunology, Immunotherapy, 69(8), 1423-1436. doi:10.1007/s00262-020-02555-2
CrossrefPubMedPMCGoogle Scholar

Prescott, H. C., & Rice, T. W. (2020). Corticosteroids in COVID-19 ARDS: evidence and hope during the pandemic. JAMA, 324(13), 1292-1295. doi:10.1001/jama.2020.16747
CrossrefPubMedGoogle Scholar

RECOVERY Collaborative Group, Horby, P., Lim, W. S., Emberson, J. R., Mafham, M., Bell, J. L., Linsell, … & Landray, M. J. (2021). Dexamethasone in hospitalized patients with Covid-19. The New England Journal of Medicine, 384(8), 693-704. doi:10.1056/nejmoa2021436
CrossrefPubMedPMCGoogle Scholar

Sarker, H., Panigrahi, R., Hardy, E., Glover, J. N. M., Elahi, S., & Fernandez-Patron, C. (2022). Glucocorticoids bind to SARS-CoV-2 S1 at multiple sites causing cooperative inhibition of SARS-CoV-2 S1 interaction with ACE2. Frontiers in Immunology, 13, 906687. doi:10.3389/fimmu.2022.906687
CrossrefPubMedPMCGoogle Scholar

Schrödinger, L., & DeLano, W. (2020) PyMOL. Retrieved from http://www.pymol.org/pymol
Google Scholar

Selvavinayagam, S. T., Sankar, S., Yong, Y. K., Murugesan, A., Suvaithenamudhan, S., Hemashree, K., … & Raju, S. (2024). Emergence of SARS-CoV-2 omicron variant JN.1 in Tamil Nadu, India - clinical characteristics and novel mutations. Scientific Reports, 14(1), 17476. doi:10.1038/s41598-024-68678-z
CrossrefPubMedPMCGoogle Scholar

Shang, J., Ye, G., Shi, K., Wan, Y., Luo, C., Aihara, H., Geng, Q., Auerbach, A., & Li, F. (2020). Structural basis of receptor recognition by SARS-CoV-2. Nature, 581(7807), 221-224. doi:10.1038/s41586-020-2179-y
CrossrefPubMedPMCGoogle Scholar

Zaidi, A. K., & Singh, R. B. (2024). SARS-CoV-2 variant biology and immune evasion. Progress in Molecular Biology and Translational Science, 202, 45-66. doi:10.1016/bs.pmbts.2023.11.007
CrossrefPubMedGoogle Scholar

Zhang, Y., Hu, S., Wang, J., Xue, Z., Wang, C., & Wang, N. (2021). Dexamethasone inhibits SARS-CoV-2 spike pseudotyped virus viropexis by binding to ACE2. Virology, 554, 83-88. doi.org/10.1016/j.virol.2020.12.001
CrossrefPubMedPMCGoogle Scholar


Refbacks

  • There are currently no refbacks.


Copyright (c) 2025 Nataliia Khmil, Anna Shestopalova, Volodymyr Kolesnikov

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.