BIOACTIVE RICH FINGERED CITRON LEAVES: INVESTIGATION OF USAGE POTENTIAL IN COSMETIC AND PHARMACEUTICAL PRODUCTS

Hilal Tasbasi, Meltem Asan-Ozusaglam


DOI: http://dx.doi.org/10.30970/sbi.1804.804

Abstract


Background. Fingered citron is one of the important plants attracting attention with its important bioactive components. The aim of the study was to evaluate the potential for use of fingered citron leaves in the cosmetic and pharmaceutical industries.
Materials and Methods. The antimicrobial activity of fingered citron leaf ethanol extract was determined by disc diffusion and micro-dilution methods against clinical pathogens. Furthermore, fingered citron leaf ethanol extract sun protection factor (SPF) was spectrophotometrically evaluated.
Results and Discussion. The inhibition zone diameters obtained as a result of the disc diffusion method were 9.16 mm against Candida albicans ATCC 10231 and 9.63 mm against C. glabrata RSKK 04019. Staphylococcus aureus ATCC 25923 was inhibited by fingered citron leaf ethanol extract with 7.76 mm of inhibition zone. Minimal inhibition (MIC) and bactericidal or fungicidal (MBC or MFC) concentrations values varied between 2.5 and 40 mg/mL. Additionally, the biological activity of the cream formulation obtained with cream, probiotic strain Limosilactobacillus fermentum MA-7 and fingered citron leaf extract was evaluated using the well diffusion method. The inhibition zone diameters of cream, L. fermentum MA-7, and fingered citron leaf extract cream group against C. albicans ATCC 10231, C. glabrata RSKK 04019 and S. aureus ATCC 25923 were determined as 2.73 mm, 4.37 mm, and 5.21 mm, respectively. Furthermore, the SPF value of fingered citron leaf ethanol extract was determined as 25.82. Then, fingered citron leaf ethanol extract-cream mixtures were prepared at various concentrations. It was determined that the SPF values of the extract and cream mixtures were higher at all concentrations compared to the commercial cream (control). The highest SPF value was determined as 6.7 at 10 mL concentration.
Conclusion. The results indicated that fingered citron leaf ethanol extract can be a valuable resource for the cosmetic and pharmaceutical industries in the development of natural origin and effective products.


Keywords


biological activity, Citrus medica L. var. sarcodactylis, extract, cream, pathogens

Full Text:

PDF

References


Abirami, A., Nagarani, G., & Siddhuraju, P. (2013). Antimicrobial activity of crude extract of Citrus hystrix and Citrus maxima. International Journal of Pharmaceutical Science and Research, 4(1), 296-300.
Google Scholar

Anbualakan, K., Tajul Urus, N. Q., Makpol, S., Jamil, A., Mohd Ramli, E. S., Md Pauzi, S. H., & Muhammad, N. (2022). A scoping review on the effects of carotenoids and flavonoids on skin damage due to ultraviolet radiation. Nutrients, 15(1), 92. doi:10.3390/nu15010092
CrossrefPubMedPMCGoogle Scholar

Antonić, B., Dordević, D., Jančíková, S., & Kushkevych, I. (2020). Antimicrobial activity of natural soaps tested by Bioscreen methodology. Studia Biologica, 14(1), 23-32. doi:10.30970/sbi.1401.608
CrossrefGoogle Scholar

Asan-Ozusaglam, M., Koc, G., & Demir, F. H. (2021). Investigation of usage potential of kumquat fruit and leaf methanol extracts for aquaculture and cosmetics industries. AGBIOL 2021, 249-255. Retrieved from https://agbiol.congress.gen.tr/files/site/16/agbiol-2024.pdf
Google Scholar

Boo, Y. C. (2020). Emerging strategies to protect the skin from ultraviolet rays using plant-derived materials. Antioxidants, 9(7), 637. doi:10.3390/antiox9070637
CrossrefPubMedPMCGoogle Scholar

Borah, R., Adhikari, M., Subba, M., & Sharma, C. (2022). Formulation and evaluation of polyherbal ointment by using orange peel, lemon grass, turmeric and Aloe vera. Journal of Pharmacognosy and Phytochemistry, 11(5), 177-180.
Google Scholar

Buakaew, W., Pankla Sranujit, R., Noysang, C., Krobthong, S., Yingchutrakul, Y., Thongsri, Y., Potup, P., Daowtak, K., & Usuwanthim, K. (2022). Proteomic analysis reveals proteins involved in the mode of action of β-citronellol identified from Citrus hystrix DC. Leaf against Candida albicans. Frontiers in Microbiology, 13, 894637. doi:0.3389/fmicb.2022.894637
CrossrefPubMedPMCGoogle Scholar

Burnett, C. L., Bergfeld, W. F., Belsito, D. V., Hill, R. A., Klaassen, C. D., Liebler, D. C., Marks, J. G., Shank, R. C., Slaga, T. J., Snyder, P. W., Gill, L. J., & Heldreth, B. (2021). Safety assessment of Citrus flower- and leaf-derived ingredients as used in cosmetics. International Journal of Toxicology, 40(3): 53S-76S. doi:10.1177/10915818211040477
CrossrefPubMedGoogle Scholar

Chaughule, R. S., & Barve, R. S. (2024). Role of herbal medicines in the treatment of infectious diseases. Vegetos, 37(1), 41-51. doi:10.1007/s42535-022-00549-2
CrossrefPubMedPMCGoogle Scholar

Chen, H., Yang, H., Zhou, A., Xiao, S., Song, M., Chen, H., & Cao, Y. (2021). A novel continuous phase-transition extraction effectively improves the yield and quality of finger citron essential oil extract. Journal of the American Oil Chemists' Society, 98(9), 911-921. doi:10.1002/aocs.12433
CrossrefGoogle Scholar

Cherukuri, S., Paramanayagam, A., Prabakaran, R., Mayakannan, M., & Vuppalapati, L. (2023). Evaluation of cutaneous wound healing activity of Citrus aurantium Fruit Peel extract-based ointment in albino rats. Research Journal of Pharmacy and Technology, 16(1), 250-254. doi:10.52711/0974-360X.2023.00046
CrossrefGoogle Scholar

Chinnasamy, S., Ramachandran, M., & Sivaji, C. (2022). A study on ultraviolet radiation and its effects. REST Journal on Advances in Mechanical Engineering, 1(2), 1-9. doi:10.46632/jame/1/2/1
CrossrefGoogle Scholar

Church, N. A., & McKillip, J. L. (2021). Antibiotic resistance crisis: challenges and imperatives. Biologia, 76(5), 1535-1550. doi:10.1007/s11756-021-00697-x
CrossrefGoogle Scholar

Dou, J., Feng, N., Guo, F., Chen, Z., Liang, J., Wang, T., Guo, X., & Xu, Z. (2023). Applications of probiotic constituents in cosmetics. Molecules, 28(19), 6765. doi:10.3390/molecules28196765
CrossrefPubMedPMCGoogle Scholar

Elias, P. M. (2005). Stratum corneum defensive functions: an integrated view. Journal of Investigative Dermatology, 125(2), 183-200. doi:10.1111/j.0022-202X.2005.23668.x
CrossrefPubMedGoogle Scholar

Flores-Balderas, X., Peña-Peña, M., Rada, K. M., Alvarez-Alvarez, Y. Q., Guzmán-Martín, C. A., Sánchez-Gloria, J. L., Huang, F., Ruiz-Ojeda, D., Morán-Ramos, S., Springall, R., & Sánchez-Muñoz, F. (2023). Beneficial effects of plant-based diets on skin health and inflammatory skin diseases. Nutrients, 15(13), 2842. doi:10.3390/nu15132842
CrossrefPubMedPMCGoogle Scholar

Ghazi, S. (2022). Do the polyphenolic compounds from natural products can protect the skin from ultraviolet rays? Results in Chemistry, 4, 100428. doi:10.1016/j.rechem.2022.100428
CrossrefGoogle Scholar

Ghortale, M., & Somani, S. J. (2023). Design and evaluation of lemongrass lotion for skin nourishment. International Journal of Pharmaceutical Sciences, 1(12), 735-757. doi:10.5281/zenodo.10426655
Google Scholar

Gonzalez-Burgos, E., & Gomez-Serranillos, M. P. (2012). Terpene compounds in nature: a review of their potential antioxidant activity. Current Medicinal Chemistry, 19(31), 5319-5341. doi:10.2174/092986712803833335
CrossrefPubMedGoogle Scholar

Górniak, I., Bartoszewski, R., & Króliczewski, J. (2019). Comprehensive review of antimicrobial activities of plant flavonoids. Phytochemistry Reviews, 18(1), 241-272. doi:10.1007/s11101-018-9591-z
CrossrefGoogle Scholar

Gueniche, A., Valois, A., Kerob, D., Rasmont, V., & Nielsen, M. (2022). A combination of Vitreoscilla filiformis extract and Vichy volcanic mineralizing water strengthens the skin defenses and skin barrier. Journal of the European Academy of Dermatology and Venereology, 36(2), 16-25. doi:10.1111/jdv.17786
CrossrefPubMedGoogle Scholar

Gupta, A., Jeyakumar, E., & Lawrence, R. (2021). Journey of limonene as an antimicrobial agent. Journal of Pure & Applied Microbiology, 15(3), 1094-1110. doi:10.22207/jpam.15.3.01
CrossrefGoogle Scholar

Habeebuddin, M., Karnati, R. K., Shiroorkar, P. N., Nagaraja, S., Asdaq, S. M. B., Khalid Anwer, M., & Fattepur, S. (2022). Topical probiotics: more than a skin deep. Pharmaceutics, 14(3), 557. doi:10.3390/pharmaceutics14030557
CrossrefPubMedPMCGoogle Scholar

Hameed, S., Hans, S., Monasky, R., Thangamani, S., & Fatima, Z. (2021). Understanding human microbiota offers novel and promising therapeutic options against Candida infections. Pathogens, 10(2), 183. doi:10.3390/pathogens10020183
CrossrefPubMedPMCGoogle Scholar

Hill, C., Guarner, F., Reid, G., Gibson, G. R., Merenstein, D. J., Pot, B., Morelli, L., Canani, R. B., Flint, H. J., Salminen, S., Calder, P. C., & Sanders, M. E. (2014). The International Scientific Association for Probiotics and Prebiotics consensus statement on the scope and appropriate use of the term probiotic. Nature Reviews Gastroenterology & Hepatology, 11(8), 506-514. doi:10.1038/nrgastro.2014.66
CrossrefPubMedGoogle Scholar

Himawan, A., Rante, H., & Ningsih, D. R. (2017). GC-MS analysis and antimicrobial activity determination of Citrus medica L. var proper leaf essential oil from South Sulawesi against skin pathogen microorganism. IOP Conference Series: Materials Science and Engineering, 259(1), 012001. doi:10.1088/1757-899X/259/1/012001
CrossrefGoogle Scholar

Hoang, H. T., Moon, J. Y., & Lee, Y. C. (2021). Natural antioxidants from plant extracts in skincare cosmetics: recent applications, challenges and perspectives. Cosmetics, 8(4), 106. doi:10.3390/cosmetics8040106
CrossrefGoogle Scholar

Imam, S., Azhar, I., & Mahmood, Z. A. (2015). In-vitro evaluation of sun protection factor of a cream formulation prepared from extracts of Musa accuminata (L.), Psidium gujava (L.) and Pyrus communis (L.). Asian Journal of Pharmaceutical and Clinical Research, 8(3), 234-237.
Google Scholar

Indira, M., Peele, K. A., Krupanidhi, S., Prabhakar, K. V., Vimala, K. B. S., Sravya, I., & Venkateswarulu, T. C. (2023). In vitro assessment of the bioactive compounds and anticancer potential of Citrus medica leaf extract. Tropical Life Sciences Research, 34(3), 197-215. doi:10.21315/tlsr2023.34.3.11
CrossrefPubMedPMCGoogle Scholar

Indriaty, S., Senja, R. Y., Firmansyah, D., Hidayati, N. R., Karlina, N., Zam, M. Y. Z., & Ramadhani, D. A. (2024). Antibacterial activity test of tea tree and lemon oil combination and its formulation in cream preparation. Medical Sains: Jurnal Ilmiah Kefarmasian, 9(2), 591-598. doi:doi.org/10.37874/ms.v9i2.1278
CrossrefGoogle Scholar

Karp, D., & Hu, X. (2018). The citron (Citrus medica L.) in China. In: I. Warrington (Ed.), Horticultural Reviews (Vol. 45, pp. 143-196). John Wiley & Sons, Inc. doi:10.1002/9781119431077.ch5
CrossrefGoogle Scholar

Kumar, K. S., Vani, M. G., & Wang, S. Y. (2022). Limonene protects human skin keratinocytes against UVB-induced photodamage and photoaging by activating the Nrf2-dependent antioxidant defense system. Environmental Toxicology, 37(12), 2897-2909. doi:10.1002/tox.23646
CrossrefPubMedGoogle Scholar

Kwon, J., Kethar, J., & Appavu, R. (2022). Skin cancer: the ozone layer and UV radiation. Journal of Student Research, 11(4). doi:10.47611/jsrhs.v11i4.3836
CrossrefGoogle Scholar

Li, L., Chong, L., Huang, T., Ma, Y., Li, Y., & Ding, H. (2023). Natural products and extracts from plants as natural UV filters for sunscreens: a review. Animal Models and Experimental Medicine, 6(3), 183-195. doi:10.1002/ame2.12295
CrossrefPubMedPMCGoogle Scholar

Mansur, J. D. S., Breder, M. N. R., Mansur, M. C. D. A., & Azulay, R. D. (1986). Determinaçäo do fator de proteçäo solar por espectrofotometria. Anais Brasileiros de Dermatologia, 61(4), 121-124. Retrieved from https://pesquisa.bvsalud.org/portal/resource/pt/lil-34224
Google Scholar

Mishra, S., & Acharya, S. (2021). A brief overview on probiotics: the health friendly microbes. Biomedical and Pharmacology Journal, 14(4), 1869-1880. doi:10.13005/bpj/2285
CrossrefGoogle Scholar

Najmi, A., Javed, S. A., Al Bratty, M., & Alhazmi, H. A. (2022). Modern approaches in the discovery and development of plant-based natural products and their analogues as potential therapeutic agents. Molecules, 27(2), 349. doi:10.3390/molecules27020349
CrossrefPubMedPMCGoogle Scholar

Nakai, K., & Tsuruta, D. (2021). What are reactive oxygen species, free radicals, and oxidative stress in skin diseases? International Journal of Molecular Sciences, 22(19), 10799. doi:10.3390/ijms221910799
CrossrefPubMedPMCGoogle Scholar

Osman, A. (2019). Citrus oils. In: M. Ramadan (Ed.), Fruit oils: chemistry and functionality (pp. 521-540). Springer, Cham. doi:10.1007/978-3-030-12473-1_26
CrossrefGoogle Scholar

Pekmezovic, M., Aleksic, I., Barac, A., Arsic-Arsenijevic, V., Vasiljevic, B., Nikodinovic-Runic, J., & Senerovic, L. (2016). Prevention of polymicrobial biofilms composed of Pseudomonas aeruginosa and pathogenic fungi by essential oils from selected Citrus species. FEMS Pathogens and Disease, 74(8), ftw102. doi:10.1093/femspd/ftw102
CrossrefPubMedGoogle Scholar

Perlin, D. S., Rautemaa-Richardson, R., & Alastruey-Izquierdo, A. (2017). The global problem of antifungal resistance: prevalence, mechanisms, and management. The Lancet Infectious Diseases, 17(12), e383-e392. doi:10.1016/s1473-3099(17)30316-x
CrossrefPubMedGoogle Scholar

Prc, S. P. C. o. t. (2008). Pharmacopoeia of the people's Republic of China 2005. Incorporated: BC Decker. Retrieved from https://search.worldcat.org/title/Pharmacopoeia-of-the-Peoples-Republic-of-China-:-2005/oclc/465664903

Putri, F. R., & Sailah, I. (2022). Formulation natural ingredients combination and consumer preference product sunscreen lotion. IOP Conference Series: Earth and Environmental Science, 1063(1), 012008. doi:10.1088/1755-1315/1063/1/012008
CrossrefGoogle Scholar

Sah, A. N., Juyal, V., & Melkani, A. B. (2011). Antimicrobial activity of six different parts of the plant Citrus medica Linn. Pharmacognosy Journal, 3(21), 80-83. doi:10.5530/pj.2011.21.15
CrossrefGoogle Scholar

Smythe, P., & Wilkinson, H. N. (2023). The skin microbiome: current landscape and future opportunities. International Journal of Molecular Sciences, 24(4), 3950. doi:10.3390/ijms24043950
CrossrefPubMedPMCGoogle Scholar

Tasbasi, H., & Asan-Ozusaglam, M. (2024). An innovative approach to various industrial applications: the fingered citron. Hungarian Journal of Industry and Chemistry, 52(1), 1-7. doi:10.33927/hjic-2024-01
CrossrefGoogle Scholar

Vale de Macedo, G. H. R., Costa, G. D. E., Oliveira, E. R., Damasceno, G. V., Mendonça, J. S. P., Silva, L. dos S., Chagas, V. L., Bazán, J. M. N., Aliança, A. S. dos S., Miranda, R. de C. M. de, Zagmignan, A., Monteiro, A. de S., & Nascimento da Silva, L. C. (2021). Interplay between ESKAPE pathogens and immunity in skin infections: an overview of the major determinants of virulence and antibiotic resistance. Pathogens, 10(2), 148. doi:10.3390/pathogens10020148
CrossrefPubMedPMCGoogle Scholar

Voloshyna, I. M., & Shkotova, L. V. (2022). The use of probiotic microorganisms in cosmeceuticals. Biopolym Cell, 38(1), 3-8. doi:10.7124/bc.000a6e
CrossrefGoogle Scholar

Wu, K., Jin, R., Bao, X., Yu, G., & Yi, F. (2021). Potential roles of essential oils from the flower, fruit and leaf of Citrus medica L. var. sarcodactylis in preventing spoilage of Chinese steamed bread. Food Bioscience, 43, 101271. doi:10.1016/j.fbio.2021.101271
CrossrefGoogle Scholar

Xu, Y., Wang, Y., Li, R., Sun, P., Chen, D., Shen, J., & Feng, T. (2022). Characteristic aroma analysis of finger citron in four different regions based on GC-MS-HS-SPME and ROAV. Journal of Food Processing and Preservation, 46(12), e17191. doi:10.1111/jfpp.17191
CrossrefGoogle Scholar

Yaseen, M., Mahmood, T., Yousaf, A. M., Shahzad, Y., Bjørklund, G., & Lysiuk, R. (2018). Formulation, characterization and in-vitro sun protection factor of a lemongrass sunscreen lotion: sun protection factor of a lemongrass sunscreen lotion. Proceedings of the Pakistan Academy of Sciences: B. Life and Environmental Sciences, 55(2), 11-20. Retrieved from https://ppaspk.org/index.php/PPAS-B/article/view/177
Google Scholar


Refbacks

  • There are currently no refbacks.


Copyright (c) 2024 Hilal Tasbasi, Meltem Asan-Ozusaglam

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.