IN VITRO PROPAGATION OF PEAR (PYRUS L.)
DOI: http://dx.doi.org/10.30970/sbi.1804.797
Abstract
Background. The micropropagation methods are used for the conservation of Pyrus L. phytodiversity, as well as for the creation of collections of the threatened species and pear cultivars including genotypes necessary for breeding and genetic studies.
Materials and Methods. The two Pyrus species, P. communis, and P. salicifolia Pall. as well as four pear P. communis cultivars, ’Bere Desiatova’, ’Umans’ka Juvileina’, ’Kniahynia Olga’, and ’Sofia Umans’ka’, were chosen as the experimental plants. Young shoots of Pyrus species and cultivars with apical meristem from three-year-old plants were used as primary explants. The effectiveness of sterilization was determined by the rate of sterile and viable explants. Rooted in vitro test tube shoots with 3–4 roots 2–5 cm long were transplanted to adapt into nutrient disks Jiffy-7 and Ellepress. The statistical analysis of the results was performed according to Ronald Fisher (2017) and Peter Bruce with co-workers (Bruce et al., 2020) using Statistica ver.10 (StatSoft, Inc. STATISTICA version 10.0).
Results and Discussion. According to our results, mercury dichloride (HgCl2) was the most effective of all tested sterilizers of P. communis. The P. communis explants sterilization technique was extremely difficult or unsuccessful for P. salicifolia, probably due to the dense pubescence on shoots and buds of this species. Therefore, we used the seeds as explants for micropropagation of P. salicifolia according to the standard protocol. In the best variant of Murashige–Skoog (MS) medium modification for P. communis, where MS-276 was modified by 2.0 mg/L 6-benzylaminopurine (6-BAP) and 0.01 mg/L indole-3-butyric acid (IBA), a value of 9.50 microclones per passage was obtained. However, the most active shoot formation of P. salicifolia in vitro was observed in the variant where the Driver and Kuniyuki (DKW) medium was modified by adding 2.5 mg/L 6-BAP. To induce rhizogenesis, the best medium for P. communis and P. salicifolia rhizogenesis was MS-302, modified by the addition of 0.5 mg/L α-naphthaleneacetic acid (NAA). In this variant, the first root in microclones developed in 8–10 days, and after a month, rooting reached 87.50% of P. communis and 98.54 % of P. salicifolia. The efficiencies of both Pyrus species adaptation were better with Ellepress peat plugs, than with Jiffy-7 peat pellets.
Conclusion. It is recommended to cultivate explants of P. communis on MS medium with the addition of 2.0 mg/L 6-BAP and 0.01 mg/L IBA, and P. salicifolia on DKW medium with the addition of 2.5 mg/L 6-BAP and 0.1 mg/L IBA. It is also recommended that MS medium with the addition of 0.5 mg/L NAA be used for rooting of the microclones of both Pyrus species, and Ellepress peat plugs for the adaptation of regenerated plants.
Keywords
Full Text:
PDFReferences
Adhikari, P. B., Xu, Q., & Notaguchi, M. (2022). Compatible graft establishment in fruit trees and its potential markers. Agronomy, 12(8), 1981. doi:10.3390/agronomy12081981 Crossref ● Google Scholar | ||||
| ||||
Ak, B. E., Hatipoglu, I. H., & Dikmetas, B. (2021). Propagation of fruit trees. In: M. Pakyurek (Ed.), Recent headways in pomology (Ch. 3, pp. 55-92). Ankara: Iksad Publishing House. Retrieved from https://iksadyayinevi.com/wp-content/uploads/2021/06/recent-headways-in-pomology.pdf Google Scholar | ||||
| ||||
Bruce, P., Bruce, A., & Gedeck, P. (2020). Statistical experiments and significance testing. In: N. Tache (Ed.), Practical statistics for data scientists: 50+ essential concepts using R and Python (Ch. 3, pp. 87-139). Sebastopol, CA: O'Reilly Media. Google Scholar | ||||
| ||||
Chevreau, E., Evans, K., Chagné, D., & Montanari, S. (2020). Pyrus spp. pear and Cydonia spp. quince. In: R. E. Litz, F. Pliego-Alfaro, & J. I. Hormaza (Eds.), Biotechnology of fruit and nut crops (pp. 581-605). Wallingford: CABI. doi:10.1079/9781780648279.0581 Crossref ● Google Scholar | ||||
| ||||
Darwin, C. (1868). The variation of animals and plants under domestication (Vol. 2, Ch. 12, pp. 1-27). London: John Murray. Google Scholar | ||||
| ||||
Delpino-Rius, A., Eras, J., Gatius, F., Balcells, M., & Canela-Garayoa, R. (2019). Combined analysis of primary metabolites and phenolic compounds to authenticate commercial monovarietal peach purees and pear juices. Molecules, 24(18), 3289. doi:10.3390/molecules24183289 Crossref ● PubMed ● PMC ● Google Scholar | ||||
| ||||
Driver, J. A., & Kuniyuki, A. H. (1984). In vitro propagation of Paradox walnut rootstock. HortScience, 19(4), 507-509. doi:10.21273/hortsci.19.4.507 Crossref ● Google Scholar | ||||
| ||||
Feng, Y., Ning, R., Wang, Z., He, Y., Hu, Y., Sun, L., & Liu, Z. (2023). A study on the causes of apomixis in Malus shizongensis. Horticulturae, 9(8), 926. doi:10.3390/horticulturae9080926 Crossref ● Google Scholar | ||||
| ||||
Fisher, R. A. (2017). Statistical methods for research workers. New Delhi: Repro India Limited. Google Scholar | ||||
| ||||
Habibi, F., Liu, T., Folta, K., & Sarkhosh, A. (2022). Physiological, biochemical, and molecular aspects of grafting in fruit trees. Horticulture Research, 9, uhac032. doi:10.1093/hr/uhac032 Crossref ● PubMed ● PMC ● Google Scholar | ||||
| ||||
Hartmann, H. T., & Kester, D. E. (2014). Plant propagation: principles and practices (8th Edn). Harlow: Pearson Education Ltd. Google Scholar | ||||
| ||||
Hassanen, S. A. (2013). In vitro grafting of pear (Pyrus spp.). World Applied Sciences Journal, 21(5), 705-709. Google Scholar | ||||
| ||||
Isah, T. (2023). Explant rejuvenation in the clonal propagation of woody plants. Plant Cell, Tissue and Organ Culture (PCTOC), 154(1), 209-212. doi:10.1007/s11240-023-02520-8 Crossref ● Google Scholar | ||||
| ||||
Kaviani, B., Barandan, A., Tymoszuk, A., & Kulus, D. (2023). Optimization of in vitro propagation of pear (Pyrus communis L.) 'Pyrodwarf®(S)' rootstock. Agronomy, 13(1), 268. doi:10.3390/agronomy13010268 Crossref ● Google Scholar | ||||
| ||||
Kotb, O. M., Abd El-Latif, F. M., Atawia, A. R., Saleh, S. S., & El-Gioushy, S. F. (2020). In vitro propagation and callus induction of pear (Pyrus communis) Cv. Le-Conte. Asian Journal of Biotechnology and Genetic Engineering, 3(2), AJBGE.56989 1-10. Google Scholar | ||||
| ||||
Kotoda, N. (2021). Flowering and juvenility in apple. In: S. S. Korban (Ed.), The apple genome. Springer, Cham. doi:10.1007/978-3-030-74682-7_11 Crossref ● Google Scholar | ||||
| ||||
Krivmane, B., Girgžde, E., Samsone, I., & Ruņģis, D. E. (2022). Expression of juvenility related microRNAs and target genes during micropropagation of silver birch (Betula pendula Roth). Plant Cell, Tissue and Organ Culture (PCTOC), 152(3), 455-469. doi:10.21203/rs.3.rs-1757691/v1 Crossref ● Google Scholar | ||||
| ||||
Kucher, N. M. (2012). Sterilization of Pyrus L. representatives' explants being introduced in vitro. Journal of Native and Alien Plant Studies, 8, 101-105. (In Ukrainian) Google Scholar | ||||
| ||||
Lloyd, G., & McCown, B. (1980). Commercially feasible micropropagation of mountain laurel, Kalmia latifolia, by use of shoot-tip culture. Combined Proceedings International Plant Propagators' Society, 30, 421-427. Google Scholar | ||||
| ||||
Machado, B. D., Magro, M., Rufato, L., Bogo, A., & Kreztschmar, A. A. (2017). Graft compatibility between European pear cultivars and East Malling "C" rootstock. Revista Brasileira de Fruticultura, 39(3), e-063. doi:10.1590/0100-29452017063 Crossref ● Google Scholar | ||||
| ||||
Melnichuk, M. D., Novak, T. V., & Kunah, V. A. (2003). Biotehnologiya roslyn [Biotechnology of plants]. Kyiv: Poligrafkonsaltyng. (In Ukrainian) Google Scholar | ||||
| ||||
Mudge, K., Janick, J., Scofield, S., & Goldschmidt, E. E. (2009). A history of grafting. In: J. Janick (Ed.), Horticultural reviews, Vol. 35 (Ch. 9, pp. 437-493). Hoboken: Wiley-Blackwell. doi:10.1002/9780470593776.ch9 Crossref ● Google Scholar | ||||
| ||||
Murashige, T., & Skoog, F. (1962). A revised medium for rapid growth and bio assays with tobacco tissue cultures. Physiologia Plantarum, 15(3), 473-497. doi:10.1111/j.1399-3054.1962.tb08052.x Crossref ● Google Scholar | ||||
| ||||
Opalko, O., Kucher, N., & Opalko, A. (2022). Some taxonomic notes on the genus Pyrus L. ordering. Journal of Native and Alien Plant Studies, 18, 156-190. Retrieved from http://mchr.sofievka.org/article/view/269974 (In Ukrainian) Google Scholar | ||||
| ||||
Opalko, O. A., & Ryabovol L. O. (2000). Kultyvuvannia in vitro apikalnykh merystem sortiv, hibrydiv i klonovykh pidshchep yabluni [In vitro cultivation of apical meristems of apple cultivars, hybrids and clonal rootstocks]. Sadivnytstvo, 51, 107-111. (In Ukrainian) | ||||
| ||||
Pandey, S., Dubey, R., & Dubey, R. (2024). Impact and scope of tissue culture technology in fruit culture: a review. Plant Archives, 24(1), 494-500. doi:10.51470/plantarchives.2024.v24.no.1.067 Crossref ● Google Scholar | ||||
| ||||
Pan, T., Fan, X., & Sun, H. (2023). Juvenile phase: an important phase of the life cycle in plants. Ornamental Plant Research, 3(1). doi:10.48130/opr-2023-0018 Crossref ● Google Scholar | ||||
| ||||
Poethig, R. S., & Fouracre, J. (2024). Temporal regulation of vegetative phase change in plants. Developmental Cell, 59(1), 4-19. doi:10.1016/j.devcel.2023.11.010 Crossref ● PubMed ● Google Scholar | ||||
| ||||
Pyrus L. (2024, March 30). The International Plant Names Index and World Checklist of Vascular Plants 2024. Retrieved from https://powo.science.kew.org/taxon/urn:lsid:ipni.org:names:30000967-2 | ||||
| ||||
Reed, B. M., DeNoma, J., Wada, S., & Postman, J. (2012). Micropropagation of pear (Pyrus sp.). In: M. Lambardi, E. A. Ozudogru, & S. M. Jain (Eds.), Protocols for micropropagation of selected economically-important horticultural plants (Ch. 1, pp. 3-18), Totowa: Humana Press. doi:10.1007/978-1-62703-074-8_1 Crossref ● PubMed ● Google Scholar | ||||
| ||||
Riya, S. K., Kumar, A., Prakash, S., Kumar, A., & Dubey, A. (2023). The standardization of method and time of propagation in pear (Pyrus communis L.). The Pharma Innovation Journal, 12(7). 1640-1645. Retrieved from https://www.thepharmajournal.com/archives/?year=2023&vol=12&issue=7&ArticleId=21436 Google Scholar | ||||
| ||||
Roberto, S. R., & Colombo, R. C. (2020). Innovation in propagation of fruit, vegetable and ornamental plants. Horticulturae, 6(2), 23. doi:10.3390/horticulturae6020023 Crossref ● Google Scholar | ||||
| ||||
Simionca Mărcășan, L. I., Pop, R., Somsai, P. A., Oltean, I., Popa, S., Sestras, A. F., Militaru, M., Botu, M., & Sestras, R. E. (2023). Comparative evaluation of Pyrus species to identify possible resources of interest in pear breeding. Agronomy, 13(5), 1264. doi:10.3390/agronomy13051264 Crossref ● Google Scholar | ||||
| ||||
Wang, J., & Ding, J. (2023). Molecular mechanisms of flowering phenology in trees. Forestry Research, 3(1). doi:10.48130/fr-2023-0002 Crossref ● Google Scholar | ||||
| ||||
Yamamoto, T., & Terakami, S. (2016). Genomics of pear and other Rosaceae fruit trees. Breeding Science, 66(1), 148-159. doi:10.1270/jsbbs.66.148 Crossref ● PubMed ● PMC ● Google Scholar |
Refbacks
- There are currently no refbacks.
Copyright (c) 2024 Nataliia Kucher, Volodymyr Hrabovyi, Olga Opalko, Volodymyr Zamorskyi, Anatoly Opalko

This work is licensed under a Creative Commons Attribution 4.0 International License.