THE EFFECT OF ZINC CITRATE, SELENIUM CITRATE, AND GERMANIUM CITRATE ON HEMATOLOGICAL PARAMETERS OF RABBITS UNDER HEAT STRESS

Marian Yuzviak, Yaroslav Lesyk, Ivan Luchka, Halyna Denys, Yuriy Salyha


DOI: http://dx.doi.org/10.30970/sbi.1803.790

Abstract


Background. The environmental crisis has affected the annual ambient tempera­ture increase, adversely affecting the mammalian body. Due to their lack of sweat glands, Rabbits are more sensitive to heat stress than other animals. The effect of elevated ambient temperatures on the rabbit body leads to violations of blood parame­ters, endocrine regulation, immune and reproductive function, which reduces their productivity and increases animal mortality. Particular attention is now paid to the study of organic compounds of trace elements, which are characterized by high physiological activity, are non-toxic, have a wide range of biological effects, and have a positive impact on reducing the negative effect of elevated ambient temperatures on animals. However, their action depends on the element and its applied quantity. Therefore, the main objective of this study was to investigate the effect of zinc citrate, selenium citrate, and germanium citrate on changes in the number of blood cells in rabbits to mitigate the effects of heat stress.
Materials and methods. The studies were conducted on young analog rabbits of the Termon White breed from 35 to 78 days of age. The rabbits were kept indoors at elevated ambient temperatures from 28.9 to 30 °C and relative humidity from 78.1 to 87.4 %. Animals of the control group were kept on the main diet with feeding of standard balanced granulated compound feed and water without restriction. Rabbits of groups I, II, and III of the study groups consumed the same compound feed as in control, but within 24 hours, they received water: group I – zinc citrate – 60 mg Zn/L or 12 mg Zn/kg of body weight; group II – selenium citrate – 300 μg Se/L or 60 μg Se/kg of body weight; group III – germanium citrate – 62.5 μg Ge/L or 12.5 μg Ge/kg of body weight. Using individual drinkers for each animal and placing the animals in different cages allowed us to control the amount of water consumed by each rabbit.
Blood for the study was selected for supplementation on the 14th day of the prepara­tory period and the 14th and 29th days of the study period. During the study period, the room temperature was monitored, taking into account the temperature and humidity index.
Results. The addition of micronutrient citrates to the diet of rabbits during 29 days of study under heat stress caused haematological changes in indicators compared to the control: the number of erythrocytes in the blood of rabbits of experimental groups I and II increased by 16.4 and 13.6 % and 19.9 and 14.5 % on day 14 and 29, respectively, in group III by 15.3 % on day 14; the haemoglobin content of groups I, II and III increased by 20.8, 21.6 and 19.5 % on day 14 and 11.1, 12.5 and 9.7 % on day 29; haematocrit value of groups I and II increased by 24.1 and 15.7 % and 21.1 and 16.5 % during the study, group III by 18.6% on day 14; the number of leukocytes of groups I, II and III decreased by 13.1 and 8.3 %; 11.2 and 10.4 % and by 11.4 and 9.3 % on days 14 and 29; the number of lymphocytes of groups I, II and III decreased by 25.9, 27.3 and 29.0 % on day 14 and by 20.4, 21.7 and 16.0 % on day 29; the number of monocytes of groups I and II increased by 14.8 and 21.3 % and 17.0 and 18.3 % over 29 days; the number of platelets in animals of group II decreased by 29.4 % on day 29, the average volume of red blood cells increased by 11.6 and 14.6 % on days 14 and 29 of the experiment.
Conclusions. Adding micronutrient citrates to the rabbit diet mitigated the effects of heat stress on the body. The effect of these additives on animals resulted in significant changes in the hematological parameters of the rabbits’ blood, of which the best results were observed under the influence of selenium citrate (60 μg Se/kg body weight) and zinc citrate (12 mg Zn/kg body weight): red blood cell count (p <0.05–0.01), leukocyte (p <0.05–0.01), lymphocyte (p <0.05–0.01), monocyte (p <0.05–0.01), haemoglobin content (p <0.01–0.001), haematocrit value (p <0.01), compared to the control. Feeding germanium citrate led to less pronounced changes in these blood parameters.


Keywords


rabbits, blood, zinc citrate, selenium citrate, germanium citrate, heat stress

Full Text:

PDF

References


Abdel-Wareth, A. A. A., Amer, S. A., Mobashar, M., & El-Sayed, H. G. M. (2022). Use of zinc oxide nanoparticles in the growing rabbit diets to mitigate hot environmental conditions for sustainable production and improved meat quality. BMC Veterinary Research, 18(1), 354. doi:10.1186/s12917-022-03451-w
CrossrefPubMedPMCGoogle Scholar

Alagawany, M., Qattan, S. Y. A., Attia, Y. A., El-Saadony, M. T., Elnesr, S. S., Mahmoud, M. A., Madkour, M., Abd El-Hack, M. E., & Reda, F. M. (2021). Use of chemical nano-selenium as an antibacterial and antifungal agent in quail diets and its effect on growth, carcasses, antioxidant, immunity and caecal microbes. Animals, 11(11), 3027. doi:10.3390/ani11113027
CrossrefPubMedPMCGoogle Scholar

Ayoub, M. A., Okab, A., & Koriem, A. (2007). Effect of seasonal variations on some haematological and plasma biochemical parameters in Egyptian male and female baladi red rabbits. In International Conference on Rabbit Production in Hot Climates (Vol. 5, pp. 509-522), Hurghada, Egypt.
Google Scholar

Boiko, О. V., Honchar, О. F., Lesyk, Y. V., Kovalchuk, І. І., Gutyj, B. V., & Dychok-Niedzielska, A. Z. (2021). Effect of consumption of I, Se, S and nanoaquacitrates on hematological and biochemical parameters of the organism of rabbits. Regulatory Mechanisms in Biosystems, 12(2), 335-340. doi:10.15421/022145
CrossrefGoogle Scholar

Boiko, O., Lesyk, Ya., Bashchenko, M., Honchar, O., Denys, H., Grabovska, O., & Luchka, I. (2022). Zinc citrate influence on the concentration of some macro- and microelements in rabbit body tissues. Studia Biologica, 16(4), 45-58. doi:10.30970/sbi.1604.697
CrossrefGoogle Scholar

Chrastinová, Ľ., Čobanová, K., Chrenková, M., Poláčiková, M., Formelová, Z., Lauková, A., Ondruška, Ľ. Pogány Simonová, M., Strompfová, V., Bučko, O., Mlyneková, Z., Mlynár, R., & Grešáková, Ľ. (2015). High dietary levels of zinc for young rabbits. Slovak Journal of Animal Science, 48(2), 57-63. Retrieved from http://www.cvzv.sk/slju/15_2/2_chrastinova.pdf
Google Scholar

Dahmani, Y., Benali, N., Saidj, D., Chirane, M., Ainbaziz, H., & Temim, S. (2022). Effects of heat stress on growth performance, carcass traits, physiological components, and biochemical parameters in local Algerian growing rabbits. World's Veterinary Journal, 405-417. doi:10.54203/scil.2022.wvj51
CrossrefGoogle Scholar

Dhabhar, F. S., Miller, A. H., McEwen, B. S., & Spencer, R. L. (1995). Effects of stress on immune cell distribution. Dynamics and hormonal mechanisms. The Journal of Immunology, 154(10), 5511-5527. doi:10.4049/jimmunol.154.10.5511
CrossrefPubMedGoogle Scholar

Dzen, Y., Rosalovsky, V., Shtapenko, O., Slypaniuk, O., & Salyha, Y. (2023). Effect of zinc methionine supplementation on biochemical and hematological indices of growing rabbits. Bulgarian Journal of Agricultural Science, 29(4), 714-722. Retrieved from https://www.cabidigitallibrary.org/doi/pdf/10.5555/20230358730
Google Scholar

El-Ratel, I. T., Elbasuny, M. E., El-Nagar, H. A., Abdel-Khalek, A.-K. E., El-Raghi, A. A., El Basuini, M. F., El-Kholy, K. H., & Fouda, S. F. (2023). The synergistic impact of Spirulina and selenium nanoparticles mitigates the adverse effects of heat stress on the physiology of rabbits bucks. PLoS One, 18(7), e0287644. doi:10.1371/journal.pone.02876444
CrossrefPubMedPMCGoogle Scholar

Farghly, M. F. A., Mahrose, K. M., Peris, S. I., Abou-Kassem, D. E., Metwally, K. A., Abougabal, M. Sh., & Abd El-Aziz, A. (2021). Effects of lighting source as an environmental strategy for heat stress amelioration in growing Californian rabbits during summer season. Animal Biotechnology, 33(1), 159-166. doi:10.1080/10495398.2021.1895186
CrossrefPubMedGoogle Scholar

Fedoruk, R. S., Kovalchuk, I. I., Mezentseva, L. M., Tesarivska, U. I., Pylypets, A. Z., & Kaplunenko, V. H. (2022). Germanium compounds and their role in animal body. The Animal Biology, 24(1), 50-60. doi:10.15407/animbiol24.01.050
CrossrefGoogle Scholar

Fedoruk, R., Tesarivska, U., Khrabko, M., Tsap, M., & Denys, H. (2018). Impact of feeding male rats F2 with different doses of germanium citrate on the content of traceelements in their tissues and organs. Agricultural Science and Practice, 5(3), 40-46. doi:10.15407/agrisp5.03.040
CrossrefGoogle Scholar

Hanson, Z. D., Mirshahidi, H., Brothers, J., Mirshahidi, S., Pham, B., Samaeekia, R., & Akhtari, M. (2023). Hemoglobin response to zinc supplementation in patients with zinc deficiency and chronic anemia. Blood, 142(Supplement 1), 5222-5222. doi:10.1182/blood-2023-191197
CrossrefGoogle Scholar

Hariharan, S., & Dharmaraj, S. (2020). Selenium and selenoproteins: it's role in regulation of inflammation. Inflammopharmacology, 28(3), 667-695. doi.org/10.1007/s10787-020-00690-x
CrossrefPubMedPMCGoogle Scholar

Hassan, F., Mobarez, S., Mohamed, M., Attia, Y., Mekawy, A., & Mahrose, K. (2021). Zinc and/or selenium enriched spirulina as antioxidants in growing rabbit diets to alleviate the deleterious impacts of heat stress during summer season. Animals, 11(3), 756. doi:10.3390/ani11030756
CrossrefPubMedPMCGoogle Scholar

He, L., Lin, Q., Zhong, L., Zeng, Q., & Song, J. (2022). Thromboelastography maximum amplitude as an early predictor of disseminated intravascular coagulation in patients with heatstroke. International Journal of Hyperthermia, 39(1), 605-610. doi:10.1080/02656736.2022.2066206
CrossrefPubMedGoogle Scholar

Hosny, S. H., Hashem, N. M., Morsy, A. S., & Abo-elezz, Z. R. (2020). Effects of organic selenium on the physiological response, blood metabolites, redox status, semen quality, and fertility of rabbit bucks kept under natural heat stress conditions. Frontiers in Veterinary Science, 7, 290. doi:10.3389/fvets.2020.00290
CrossrefPubMedPMCGoogle Scholar

Jayaratne, B. R., & Uththara, S. L. H. (2018). Clinico-pathological evaluation of heat stroke induced disseminated intravascular coagulation. Medico-Legal Journal of Sri Lanka, 6(2), 73-77. doi:10.4038/mljsl.v6i2.7378
CrossrefGoogle Scholar

Kawatani, Y., Suzuki, T., Shimizu, R., Kelly, V. P., & Yamamoto, M. (2011). Nrf2 and selenoproteins are essential for maintaining oxidative homeostasis in erythrocytes and protecting against hemolytic anemia. Blood, 117(3), 986-996. doi:10.1182/blood-2010-05-285817
CrossrefPubMedGoogle Scholar

Khalil, H. A., Yaseen, M. A., & Hamdy, A. M. M. (2014). Behavioral activities, physiological body reactions, hematological parameters and hormonal profiles for bucks of New Zealand white and baladi red rabbits exposed to short term of high temperature. Asian Journal of Poultry Science, 9(4), 191-202. doi.org/10.3923/ajpsaj.2015.191.202
CrossrefGoogle Scholar

Khrabko, M. I., Fedoruk, R. S., & Dolaichuk, O. P. (2016). Physiological and biochemical processes in the bodies of female rats F0 and male rats F1 under conditions of administration of "nano-germanium" citrate and chemically synthesized germanium citrate. Visnyk of Lviv University. Biological series, 73, 226-234. (In Ukrainian)
Google Scholar

Kong, T., Qu, Y. S., & Zhu, L. Q. (2007). Biological function of trace element-germanium. Studies of Trace Elements and Health, 24(1), 59-60.
Google Scholar

Konkol, D., & Wojnarowski, K. (2018). The use of nanominerals in animal nutrition as a way to improve the composition and quality of animal products. Journal of Chemistry, 2018, 1-7. doi:10.1155/2018/5927058
CrossrefGoogle Scholar

Kosinov, M. V., & Kaplunenko, V. G. (2009). Process for the preparation of metal carboxylates nanotechnology of metal carboxylates preparation (Patent of Ukraine for utility model No. 38391). Bulletin No. 1/2009. Retrieved from https://base.uipv.org/searchINV/search.php?action=viewdetails&IdClaim=128062&cha pter=description (In Ukraine)
Google Scholar

Lee, S. R. (2018). Critical role of zinc as either an antioxidant or a prooxidant in cellular systems. Oxidative Medicine and Cellular Longevity, 2018, 9156285. doi:10.1155/2018/9156285
CrossrefPubMedPMCGoogle Scholar

Leineweber, C., Müller, E., & Marschang, R. E. (2018). Blood reference intervals for rabbits (Oryctolagus cuniculus) from routine diagnostic samples. Tierärztliche Praxis Ausgabe K: Kleintiere / Heimtiere, 46(6), 393-398. doi:10.1055/s-0038-1677403
CrossrefPubMedGoogle Scholar

Li, L., Ruan, T., Lyu, Y., & Wu, B. (2017). Advances in effect of germanium or germanium compounds on animals - a review. Journal of Biosciences and Medicines, 5(7), 56-73. doi:10.4236/jbm.2017.57006
CrossrefGoogle Scholar

Liang, Z.-L., Chen, F., Park, S., Balasubramanian, B., & Liu, W.-C. (2022). Impacts of heat stress on rabbit immune function, endocrine, blood biochemical changes, antioxidant capacity and production performance, and the potential mitigation strategies of nutritional intervention. Frontiers in Veterinary Science, 9, 906084. doi:10.3389/fvets.2022.906084
CrossrefPubMedPMCGoogle Scholar

Marai, I. F. M., Ayyat, M. S., & Abd El-Monem, U. M. (2001). Growth performance and reproductive traits at first parity of New Zealand white female rabbits as affected by heat stress and its alleviation under Egyptian conditions. Tropical Animal Health and Production, 33(6), 451-462. doi:10.1023/a:1012772311177
CrossrefPubMedGoogle Scholar

Marai, I. F. M., Habeeb, A. A. M., & Gad, A. E. (2002). Rabbit's productive, reproductive and physiological performance traits as affected by heat stress: a review. Livestock Production Science, 78(2), 71-90. doi:10.1016/S0301-6226(02)00091-X
CrossrefGoogle Scholar

Nakamura, T., Nagura, T., Akiba, M., Sato, K., Tokuji, Y., Ohnishi, M., & Osada, K. (2010). Promotive effects of the dietary organic germanium poly-trans-[(2-carboxyethyl) germasesquioxane] (Ge-132) on the secretion and antioxidative activity of bile in rodents. Journal of Health Science, 56(1), 72-80. doi:10.1248/jhs.56.72
CrossrefGoogle Scholar

Nakyinsige, K., Sazili, A. Q., Aghwan, Z. A., Zulkifli, I., Goh, Y. M., & Fatimah, A. B. (2013). Changes in blood constituents of rabbits subjected to transportation under hot, humid tropical conditions. Asian-Australasian Journal of Animal Sciences, 26(6), 874-878. doi:10.5713/ajas.2012.12652
CrossrefPubMedPMCGoogle Scholar

Nebylytsia, M. S., Onyshchenko, R. O., Vashchenko, O. V., & Boyko, O. V. (2023). Analizator povitrianoho seredovyshcha elektronnyi [Electronic air environment analyser] (Utility model patent of Ukraine No. 127047). Bulletin No. 13. Retrieved from https://base.uipv.org/searchINV/search.php?action=viewdetails&IdClaim=284535 (In Ukraine)

Oh, C., Li, M., Kim, E., Park, J. S., Lee, J., & Ham, S. W. (2011). Cheminform abstract: antioxidant and radical scavenging activities of ascorbic acid derivatives conjugated with organogermanium. Cheminform, 42(16), 3513-3514. doi:10.1002/chin.201116213
CrossrefGoogle Scholar

Okab, A. B., El-Banna, S. G., & Koriem, A. A. (2008). Influence of environmental temperatures on some physiological and biochemical parameters of male New-Zealand rabbits. Slovak Journal of Animal Science, 41(1), 12-19.
Google Scholar

Petrovska, I., Salyha, Y., & Vudmaska, I. (2022). Statystychni metody v biolohichnykh doslidzhenniakh [Statistical methods in biological research]. Kyiv: Ahrarna nauka. Retrieved from https://www.inenbiol.com/images/stories/Rozrobky/Books/2022/Statistika_2022.pdf (In Ukraine)
Google Scholar

Quaye, I. K. (2015). Extracellular hemoglobin: the case of a friend turned foe. Frontiers in Physiology, 6, 96. doi:10.3389/fphys.2015.00096
CrossrefPubMedPMCGoogle Scholar

Sharaf, A. K., El-Darawany, A. A., Nasr, A. S., & Habeeb, A. A. M. (2021). Alleviation the negative effects of summer heat stress by adding selenium with vitamin E or AD3E vitamins mixture in drinking water of female rabbits. Biological Rhythm Research, 52(4), 535-548. doi:10.1080/09291016.2019.1613796
CrossrefGoogle Scholar

Sheiha, A. M., Abdelnour, S. A., Abd El-Hack, M. E., Khafaga, A. F., Metwally, K. A., Ajarem, J. S., Maodaa, S. N., Allam, A. A., & El-Saadony, M. T. (2020). Effects of dietary biological or chemical-synthesized nano-selenium supplementation on growing rabbits exposed to thermal stress. Animals, 10(3), 430. doi:10.3390/ani10030430
CrossrefPubMedPMCGoogle Scholar

Viswanathan, K., & Dhabhar, F. S. (2005). Stress-induced enhancement of leukocyte trafficking into sites of surgery or immune activation. Proceedings of the National Academy of Sciences, 102(16), 5808-5813. doi:10.1073/pnas.0501650102
CrossrefPubMedPMCGoogle Scholar

Vlizlo, V. V., Fedoruk, R. S., & Ratych, I. B. (2012). Laboratorni metody doslidzhen u biolohiyi, tvarynnytstvi ta veterynarniy medytsyni [Laboratory methods of investigation in biology, stockbreeding and veterinary]. Lviv: Spolom. (In Ukrainian)
Google Scholar

Waltz, X., Baillot, M., Connes, P., Bocage, B., & Renaudeau, D. (2014). Effects of hydration level and heat stress on thermoregulatory responses, hematological and blood rheological properties in growing pigs. PLoS One, 9(7), e102537. doi:10.1371/journal.pone.0102537
CrossrefPubMedPMCGoogle Scholar

Wang, H. L., Zhang, J. S., & Yu, H. Q. (2007). Elemental selenium at nano size possesses lower toxicity without compromising the fundamental effect on selenoenzymes: comparison with selenomethionine in mice. Free Radical Biology & Medicine, 42(10), 1524-1533. doi:10.1016/j.freeradbiomed.2007.02.013
CrossrefPubMedGoogle Scholar

Yan, J. Y., Zhang, G. W., Zhang, C., Tang, L., & Kuang, S. Y. (2017). Effect of dietary organic zinc sources on growth performance, incidence of diarrhea, serum and tissue zinc concentrations, and intestinal morphology in growing rabbits. World Rabbit Science, 25(1), 43-49. doi:10.4995/wrs.2017.5770
CrossrefGoogle Scholar

Zhang, J., Wang, X., & Xu, T. (2008). Elemental selenium at nano size (Nano-Se) as a potential chemopreventive agent with reduced risk of selenium toxicity: comparison with Se-methylselenocysteine in mice. Toxicological Sciences, 101(1), 22-31. doi:10.1093/toxsci/kfm221
CrossrefPubMedGoogle Scholar

Zheng, H. P. (2011). Physiological function of organic germanium and its application in food. Studies of Trace Elements and Health, 28, 65-67. Retrieved from https://www.scirp.org/reference/ReferencesPapers?ReferenceID=2082944
Google Scholar


Refbacks

  • There are currently no refbacks.


Copyright (c) 2024 Marian Yuzviak, Yaroslav Lesyk, Ivan Luchka, Halyna Denys, Yuriy Salyha

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.