6-PHOSPHOFRUCTO-2-KINASE/FRUCTOSE-2,6-BISPHOSPHATASE GENUS: STRUCTURAL ORGANIZATION, EXPRESSION AND REGULATION OF THE EXPRESSION

D. O. Minchenko, A. Y. Bobarykina, A. B. Kundieva, N. M. Lypova, I. V. Bozhko, O. O. Ratushna, O. H. Minchenko


DOI: http://dx.doi.org/10.30970/sbi.0303.040

Abstract


A bifunctional PFKFB enzyme is a key regulator of glycolysis. Four different genes encode the synthesis of multiple PFKFB isoforms. We analyzed data concerning structural organization of PFKFB genes and alternative splice variants of PFKFB mRNA, as well as expression and molecular mechanisms of regulation of different PFKFB isoforms in malignant tumors and at hypoxia, and mechanisms of hormonal regulation. Hypoxia inducible factor (HIF)-dependent mechanisms of regulation of the expression of different PFKFB variants are presented and discussed.


Keywords


PFKFB, expression regulation, mRNA, alternative splicing, HIF

References


1. Okar D. A., Lange A. J. Fructose-2,6-bisphosphate and control of carbohydrate metabolism in eukaryotes. Biofactors, 1999; 10(1): 1-14.
https://doi.org/10.1002/biof.5520100101

2. Wu C., Khan S. A., Peng L.-J., Lange A. J. Roles for fructose-2,6-bisphosphate in the control of fuel metabolism: beyond its allosteric effects on glycolytic and gluconeogenic enzymes. Advances in Enzyme Regulation, 2006; 46: 72-82.
https://doi.org/10.1016/j.advenzreg.2006.01.010
PMid:16860376

3. Okar D. A., Manzano A., Navarro-Sabate A. et al. PFK-2/FBPase 2: maker and breaker of the essential biofactor fructose-2,6-bisphosphate. Trends in Biochemical Sciences, 2001; 26(1): 30-35.
https://doi.org/10.1016/S0968-0004(00)01699-6

4. Rider M. H., Bertrand L., Vertommen D. et al. 6-phosphofructo-2-kinase/fructose-2,6-biphosphatase: head-head with a bifunctional enzyme that controls glycolysis. Biochemical Journal, 2004; 381(Pt. 3): 561-579.
https://doi.org/10.1042/BJ20040752
PMid:15170386 PMCid:PMC1133864

5. Rousseau G.G., Hue L. Mammalian 6-phosphofructo-2-kinase/fructose-2,6-bisphosphatase: a bifunctional enzyme that control glycolysis. Progress in Nucleic Acid Research & Molecular Biology, 1993; 45: 99-127.
https://doi.org/10.1016/S0079-6603(08)60868-5

6. Pilkis S. J., Claus T. H., Kurland I. J., Lange A. J. 6-phosphofructo-2-kinase/fructose-2,6-biphosphatase: a metabolic signalling enzyme. Annual Review of Biochemistry, 1995; 64: 799-835.
https://doi.org/10.1146/annurev.bi.64.070195.004055
PMid:7574501

7. Bensaad K., Tsuruta A., Selak M. A. et al. TIGAR, a p53-inducible regulator of glycolysis and apoptosis. Cell, 2006; 126: 107-120.
https://doi.org/10.1016/j.cell.2006.05.036
PMid:16839880

8. Hue L., Rider M.H. Role of fructose-2,6-biphosphate in the control of glycolysis in mammalian tissues. Biochemical Journal, 1987; 245: 313-324.
https://doi.org/10.1042/bj2450313
PMid:2822019 PMCid:PMC1148124

9. Clem B., Telang S., Clem A. et al. Small-molecule inhibition of 6-phosphofructo-2-kinase activity suppresses glycolytic flux and tumor growth. Molecular Cancer Therapy, 2008; 7(1): 110-120.
https://doi.org/10.1158/1535-7163.MCT-07-0482
PMid:18202014

10. Calvo M. N., Bartrons R., Castaño E. et al. PFKFB3 gene silencing decreases glycolysis, induces cell-cycle delay and inhibits anchorage-independence growth in HeLa cells. FEBS Letters, 2006; 580(13): 3308-3314.
https://doi.org/10.1016/j.febslet.2006.04.093
PMid:16698023

11. Atsumi T., Nishio T., Niwa H. et al. Expression of inducible 6-phosphofructo-2-kinase/fructose-2,6-bisphosphatase/PFKFB3 isoforms in adipocytes and their potential role in glycolytic regulation. Diabetes, 2005; 54(12): 3349-3357.
https://doi.org/10.2337/diabetes.54.12.3349
PMid:16306349

12. Minchenko A. G., Leshchinsky I., Opentanova I. L. et al. Hypoxia-inducible factor-1-mediated expression of the 6-phosphofructo-2-kinase/fructose-2,6-bisphosphatase-3 (PFKFB3) gene. Journal of Biological Chemistry, 2002; 277(8): 6183-6187.
https://doi.org/10.1074/jbc.M110978200
PMid:11744734 PMCid:PMC4518871

13. Minchenko O., Opentanova I., Caro J. Hypoxic regulation of the 6-phosphofructo-2-kinase/fructose-2,6-bisphosphatase gene family (PFKFB-1-4) expression in vivo. FEBS Letters, 2003; 554(3): 264-270.
https://doi.org/10.1016/S0014-5793(03)01179-7

14. Marsin A.-S., Douzin C., Bertrand L., Hue L. The stimulation of glycolysis by hypoxia in activated monocytes is mediated by AMP-activated protein kinase and inducible 6-phowsphofructo-2-kinase. Journal of Biological Chemistry, 2002; 277(40): 30778-30783.
https://doi.org/10.1074/jbc.M205213200
PMid:12065600

15. Atsumi T., Chesney J., Metz C. et al. High expression of inducible 6-phosphofructo-2-kinase/fructose-2,6-bisphosphatase-3 (iPFK-2; PFKFB3) in human cancers // Cancer Research, 2002; 62(20): 5881-5887.

16. Sakata J., Abe Y., Uyeda K. Molecular cloning of the DNA and expression and characterization of rat testes fructose-6-phosphate-2-kinase/fructose-2,6-bisphosphatase. Journal of Biological Chemistry, 1991; 266(24): 15764-15770.
https://doi.org/10.1016/S0006-291X(05)81088-5

17. Manzano A., Pérez J. X., Nadal M. et al. Cloning, expression and chromosomal localization of a human testis 6-phosphofructo-2-kinase/fructose-2,6-bisphosphatase gene. Gene, 1999; 229(1-2): 83-89.
https://doi.org/10.1016/S0378-1119(99)00037-2

18. Sakakibara R., Okudaira T., Fujiwara K. et al. Tissue distribution of placenta-type 6-phosphofructo- 2-kinase/fructose-2,6-bisphosphatase. Biochemical and Biophysical Research Communications, 1999; 257: 177-181.
https://doi.org/10.1006/bbrc.1999.0429
PMid:10092529

19. Minchenko O. H., Opentanova I. L., Minchenko D. O. et al. Hypoxia induces transcription of 6-phosphofructo-2-kinase/fructose-2,6-bisphosphatase 4 gene via hypoxia-inducible factor-1alpha activation. FEBS Letters, 2004; 576(1): 14-20.
https://doi.org/10.1016/j.febslet.2004.08.053
PMid:15474002

20. Minchenko O.H., Ogura T., Opentanova I.L. et al. 6-Phosphofructo-2-kinase/fructose-2,6-bisphosphatase gene family overexpression in the lung tumor. Український біохімічний журнал, 2005; 77(6): 46-50.

21. Bobarykina A.Y., Minchenko D.O., Opentanova I.L. et al. Hypoxic regulation of PFKFB-3 and PFKFB-4 gene expression in gastric and pancreatic cancer cell lines and expression of PFKFB genes in gastric cancers. Acta Biochimica Polonica, 2006; 53(4): 789-799.

22. Tominaga N., Minami Y., Sakakibara R., Uyeda K. Significance of the amino terminus of rat testis fructose-6-phosphate, 2-kinase:fructose-2,6-bisphosphatase. Journal of Biological Chemistry, 1993; 268(17): 15951-15957.

23. Dupriez V.J., Darville M.I., Antoine I.V. et al. Characterization of a hepatoma mRNA transcribed from a 6-phosphofructo-2-kinase/fructose-2,6-bisphosphatase-encoding gene and controlled by ets oncogene-related products. Proceedings of the National Academy of Sciences of the U.S.A., 1993; 90: 8224-8228.
https://doi.org/10.1073/pnas.90.17.8224
PMid:8396265 PMCid:PMC47321

24. Meton I., Egea M., Anemaet I.G. et al. Sterol regulatory element binding protein-1a transactivates 6-phosphofructo-2-kinase/fructose-2,6-bisphosphatase gene promoter. Endocrinology, 2006; 147(7): 3446-3456.
https://doi.org/10.1210/en.2005-1506
PMid:16614080

25. Foretz M., Guichard C., Ferré P., Foufelle F. Sterol regulatory element binding protein-1c is a major mediator of insulin action on the hepatic expression of glucokinase and lipogenesis-related genes. Proceedings of the National Academy of Sciences of the U.S.A., 1999; 96(22): 12737-12742.
https://doi.org/10.1073/pnas.96.22.12737
PMid:10535992 PMCid:PMC23076

26. Mykhalchenko V. G., Minchenko D. O., Bobarykina A. Y., Minchenko O. H. Structure and expression of the 6-phosphofructo-2-kinase/fructose-2,6-bisphosphatase-1 in the rat retina. Вісник КНУ імені Тараса Шевченка. Біологія, 2006; 46-47: 21-23.

27. Kurland I. J., El-Maghrabi M. R., Correia J. J., Pilkis S. J. Rat liver 6-phosphofructo-2-kinase/fructose-2,6-bisphosphatase: properties of phospho- and dephospho-forms and of two mutants in which Ser32 has been changed by site-directed mutagenesis. Journal of Biological Chemistry, 1992; 267(7): 4416-4423.

28. Heine-Suner D., Diaz-Guillen M.A., Lange A.J., Rodriguez de Cordoba S. Sequence and structure of the human 6-phosphofructo-2-kinase/fructose-2,6-bisphosphatase heart isoform gene (PFKFB2). European Journal of Biochemistry, 1998, 254(1): 103-110.
https://doi.org/10.1046/j.1432-1327.1998.2540103.x
PMid:9652401

29. Tsuchiya Y., Uyeda K. Bovine heart fructose 6-P,2-kinase:fructose-2,6-bisphosphatase mRNA and gene structure. Archives of Biochemistry and Biophysics, 1994; 310: 467-474.
https://doi.org/10.1006/abbi.1994.1194
PMid:8179334

30. Chikri M., Rousseau G.G. Rat gene coding for heart 6-phosphofructo-2-kinase/fructose-2,6-bisphosphatase: characterization of an unusual promoter region and identification of four mRNAs. Biochemistry, 1995; 34: 8876-8884.
https://doi.org/10.1021/bi00027a040
PMid:7612629

31. Marsin A., Bertrand L., Rider M. H., Deprez J. Phosphorylation and activation of heart PFK-2 by AMPK has role in the stimulation of glycolysis during ischemia. Currant Biology, 2000; 10: 1247-1255.
https://doi.org/10.1016/S0960-9822(00)00742-9

32. Hue L., Beauloye C., Bertrand L., Horman S. et al. New targets of AMP-activated kinase. Biochemical Society Transactions, 2003; 31(Pt. 1): 213-215.
https://doi.org/10.1042/bst0310213
PMid:12546687

33. Rider M. H., Van Damme J., Vertommen D. et al. Evidence for new phosphorylation sites for protein kinase C and cyclic AMP-dependent protein kinase in bovine heart 6-phosphofructo-2-kinase/fructose-2,6-bisphosphatase. FEBS Letters, 1992; 310: 139-142.
https://doi.org/10.1016/0014-5793(92)81315-D

34. Donti R., Ye G., Wu C., Lange A. J. Cardiac expression of kinase-deficient 6-phosphofructo-2-kinase/fructose-2,6-bisphosphatase inhibits glycolysis, promotes hypertrophy, impairs myocyte function and reduces insulin sensitivity. Journal of Biological Chemistry, 2004; 279(46): 48085-48090.
https://doi.org/10.1074/jbc.M405510200
PMid:15331593

35. Manzano A., Rosa J.L., Ventura F. et al. Molecular cloning, expression, and chromosomal localization of a ubiquitously expressed human 6-phosphofructo-2-kinase/ fructose-2, 6-bisphosphatase gene (PFKFB3). Cytogenetics and Cell Genetics, 1998; 83(3-4): 214-217.
https://doi.org/10.1159/000015181
PMid:10072580

36. Nicholl J., Hamilton J. A., Sutherland G. R. et al. The third human isoform of 6-phosphofructo-2-kinase/fructose-2,6-bisphosphatase (PFKFB3) map position 10p14-p15. Chromosome Research, 1997; 5(2): 150.
https://doi.org/10.1023/A:1018482511456
PMid:9146922

37. Kim S. G., Manes N. P., El-Maghrabi M. R., Lee Y. H. Crystal structure of the hypoxia-inducible form of 6-phosphofructo-2-kinase/fructose-2,6-bisphosphatase (PFKFB3): a possible new target for cancer therapy. Journal of Biological Chemistry, 2006; 281(5): 2939-2944.
https://doi.org/10.1074/jbc.M511019200
PMid:16316985

38. Fukasawa M., Takayama E., Shinomiya N. et al. Identification of the promoter region of human placental 6-phosphofructo-2-kinase/fructose-2,6-bisphosphatase gene. Biochemical and Biophysical Research Communications, 2000; 267(3): 703-708.
https://doi.org/10.1006/bbrc.1999.2022
PMid:10673355

39. Navarro-Sabaté A., Manzano A., Riera L., Rosa I. J. The human ubiquitous the 6-phosphofructo-2-kinase/fructose-2,6-bisphosphatase gene (PFKFB): promoter characterization and genomic structure. Gene, 2001; 264: 131-138.
https://doi.org/10.1016/S0378-1119(00)00591-6

40. Fukasawa M., Tsuchiya T., Takayama E. et al. Identification and characterization of the hypoxia-responsive element of the human placental 6-phosphofructo-2-kinase/fructose-2,6-bisphosphatase gene. Journal of Biochemistry, 2004; 136(3): 273-277.
https://doi.org/10.1093/jb/mvh137
PMid:15598882

41. Obach M., Navarro-Sabaté A., Caro J. et al. 6-Phosphofructo-2-kinase (pfkfb3) gene promoter contains hypoxia-inducible factor-1 binding sites necessary for transactivation in response to hypoxia. Journal of Biological Chemistry, 2004; 279(51): 53562-53570.
https://doi.org/10.1074/jbc.M406096200
PMid:15466858

42. Kessler R., Bleichert F., Warnke J. P., Eschrich K. 6-Phosphofructo-2-kinase/fructose-2,6-bisphosphatase (PFKFB3) is up-regulated in high-grade astrocytomas. Journal of Neuro-Oncology, 2008; 86(3): 257-264.
https://doi.org/10.1007/s11060-007-9471-7
PMid:17805487

43. Okamura N., Sakakibara R. A common phosphorylation site for cyclic AMP-dependent protein kinase and protein kinase C in human placental 6-phosphofructo-2-kinase/fructose-2,6-bisphosphatase. Bioscience, Biotechnology and Biochemistry, 1998; 62: 2039-2042.
https://doi.org/10.1271/bbb.62.2039
PMid:9836440

44. Bando H., Atsumi T., Nishio T. et al. Phosphorylation of the 6-phosphofructo-2-kinase/fructose 2,6-bisphosphatase/PFKFB3 family of glycolytic regulators in human cancer. Clinical Cancer Research, 2005; 11(16): 5784-5792.
https://doi.org/10.1158/1078-0432.CCR-05-0149
PMid:16115917

45. Gomez M., Manzano A., Navarro-Sabaté A. et al. Specific expression of pfkfb4 gene in spermatogonia germ cells and analysis of its 5′-flanking region. FEBS Letters, 2005; 579: 357-362.
https://doi.org/10.1016/j.febslet.2004.11.096
PMid:15642344

46. Minchenko O. H., Opentanova I. L., Ochiai A. et al. Splice isoform of 6-phosphofructo-2-kinase/fructose-2,6-bisphosphatase-4: expression and hypoxic regulation. Molecular and Cellular Biochemistry, 2005; 280(1-2): 227-234.
https://doi.org/10.1007/s11010-005-8009-6
PMid:16311927

47. Minchenko O. H., Ochiai A., Opentanova I. L. et al. Overexpression of 6-phosphofructo-2-kinase/fructose-2,6-bisphosphatase-4 in the human breast and colon malignant tumors. Biochimie, 2005; 87(11): 1005-1010.
https://doi.org/10.1016/j.biochi.2005.04.007
PMid:15925437

48. Minchenko O. H., Opentanova I. L., Ogura T. et al. Expression and hypoxia-responsiveness of the 6-phosphofructo-2-kinase/fructose-2,6-bisphosphatase 4 in the mammary gland malignant cell lines. Acta Biochimica Polonica, 2005; 52(4): 881-888.

49. Lee Y. H., Li Y., Uyeda K., Hasemann C. A. Tissue-specific structure/function differentiation of the liver isoform of 6-phosphofructo-2-kinase/fructose-2,6-bisphosphatase. Journal of Biological Chemistry, 2003; 278(1): 523-530.
https://doi.org/10.1074/jbc.M209105200
PMid:12379646

50. Traut T. W. The functions and consensus motifs of nine types of peptide segments that form different types of nucleotide-binding sites. European Journal of Biochemistry, 1994; 222: 9-19.
https://doi.org/10.1111/j.1432-1033.1994.tb18835.x
PMid:8200357

51. Rider M. H., Crepin K. M., De Cloedt M. et al. Site-directed mutagenesis of Lys-174, Asp-179 and Asp-191 in the 2-kinase domain of 6-phosphofructo-2-kinase/fructose-2,6-bisphosphatase. Biochemical Journal, 1994; 300: 111-115.
https://doi.org/10.1042/bj3000111
PMid:8198521 PMCid:PMC1138131

52. Bertrand L., Deprez J., Vertommen D. et al. Site-directed mutagenesis of rat muscle 6-phosphofructo-2-kinase/fructose-2,6-bisphosphatase: role of Asp-130 in the 2-kinase domain. Biochemical Journal, 1997; 321(Pt. 3): 623-627.
https://doi.org/10.1042/bj3210623
PMid:9032446 PMCid:PMC1218115

53. Bertrand L., Vertommen D., Feitmans E. et al. Modelling the 2-kinase domain of 6-phosphofructo-2-kinase/fructose-2,6-bisphosphatase on adenylate kinase. Biochemical Journal, 1997; 321(Pt. 3): 615-621.
https://doi.org/10.1042/bj3210615
PMid:9032445 PMCid:PMC1218114

54. Hasemann C. A., Istvan E. S., Ueda K., Deisenhofer J. The crystal structure of the bifunctional enzyme 6-phosphofructo-2-kinase/fructose-2,6-bisphosphatase reveals distinct domain homologies. Structure, 1996; 4: 1017-1029.
https://doi.org/10.1016/S0969-2126(96)00109-8

55. Chesney J., Mitchell R., Benigni F. et al. An inducible gene product for 6-phosphofructo-2-kinase with an AU-rich instability element: Role in tumor cell glycolysis and the Warburg effect. Proceedings of the National Academy of Sciences of the U.S.A, 1999; 96(6): 3047-3052.
https://doi.org/10.1073/pnas.96.6.3047
PMid:10077634 PMCid:PMC15892

56. Kessler R., Eschrich K. Splice isoforms of ubiquitous 6-phosphofructo-2-kinase/fructose-2,6-bisphosphatase in human brain. Molecular Brain Research, 2001; 87(2): 190-195.
https://doi.org/10.1016/S0169-328X(01)00014-6

57. Watanabe F., Sakai A., Furuya E. Novel isoform of rat brain fructose-6-phosphate-2-kinase/fructose-2,6-bisphosphatase are generated by tissue-specific alternative splicing. Journal of Neurochemistry, 1997; 69(1): 1-9.
https://doi.org/10.1046/j.1471-4159.1997.69010001.x
PMid:9202288

58. Watanabe F., Furuya E. Tissue-specific alternative splicing of rat brain fructose-6-phosphate-2-kinase/fructose-2,6-bisphosphatase. FEBS Letters, 1999; 458(1): 304-308.
https://doi.org/10.1016/S0014-5793(99)01174-6

59. Minchenko D.O., Tsuchihara K., Komisarenko S. V. et al. Unique alternative splice variants of mouse PFKFB-3 mRNA: tissue specific expression. Scientific Bulletin National O.O. Bohomoletz Medical University, 2008; 1: 22-31.

60. Mykhalchenko V. G., Tsuchihara K., Minchenko D. O. et al. 6-Phosphofructo-2-kinase/fructose-2,6-bisphosphatase mRNA expression in streptozotocin-diabetic rats. Biopolymers & Cell, 2008; 24(3): 260-266.
https://doi.org/10.7124/bc.0007A9

61. Mykhalchenko V. G., Minchenko D. O., Tsuchihara K. et al. Expression of mouse 6-phosphofructo-2-kinase/fructose-2,6-bisphosphatase-3 mRNA alternative splice variants in hypoxia. Український біохімічний журнал, 2008; 80(1): 19-25.
https://doi.org/10.7124/bc.0007A9

62. Bartrons R., Caro J. Hypoxia, glucose metabolism and the Warburg's effect. Journal of Bioenergetics and Biomembranes, 2007; 39(3): 223-229.
https://doi.org/10.1007/s10863-007-9080-3
PMid:17661163

63. Duran J., Gómez M., Navarro-Sabate A. et al. Characterization of a new liver- and kidney-specific pfkfb3 isozyme that is downregulated by cell proliferation and dedifferentiation. Biochemical and Biophysical Research Communications. 2008; 367(4): 748-754.
https://doi.org/10.1016/j.bbrc.2008.01.005
PMid:18191036

64. Watanabe F., Furuya E. Alternative splicing of novel exons rat heart type fructose-6-phosphate-2-kinase/fructose-2,6-bisphosphatase gene. Biochemical and Biophysical Research Communications, 2001; 282: 803-810.
https://doi.org/10.1006/bbrc.2001.4648
PMid:11401535

65. Мінченко Д. О., Ковтун О. О., Мінченко О. Г., Биць Ю. В. Родина альтернативних сплайс-варіантів мРНК 6-фосфофрукто-2-кінази/фруктозо-2,6-бісфосфатази-4. Науковий вісник Національного медичного університету ім. О. О. Богомольця, 2006; 4: 72-78.

66. Minchenko D. O., Kovtun O. O., Bobarykina A. Y. et al. A family of alternative splices variants of mouse testis PFKFB mRNA. 20th IUBMB International Congress of Biochemistry and Molecular Biology and 11th FAOBMB Congress, Kyoto, Japan, Abstracts, 2006; 1P-A-352: 137.

67. Minchenko D. O., Mykhalchenko V. G., Tsuchihara K. et al. Unique alternative splice variants of rat 6-phosphofructo-2-kinase/fructose-2,6-bisphosphatase-4 mRNA. Український біохімічний журнал, 2008; 80(4): 66-73.
https://doi.org/10.7124/bc.0007A9

68. Denko N. C. Hypoxia, HIF1 and glucose metabolism in the solid tumour. Nature Reviews Cancer, 2008; 8: 705-713.
https://doi.org/10.1038/nrc2468
PMid:19143055

69. Johnson A. B., Denko N., Barton M. C. Hypoxia induces a novel signature of chromatin modifications and global repression of transcription. Mutation Research, 2008; 640: 174-179.
https://doi.org/10.1016/j.mrfmmm.2008.01.001
PMid:18294659 PMCid:PMC2346607

70. Kaur B., Khwaja F. W., Severson E. A. et al. Hypoxia and the hypoxia-inducible-factor pathway in glioma growth and angiogenesis. Neuro-Oncology, 2005; 7(2): 134-153.
https://doi.org/10.1215/S1152851704001115
PMid:15831232 PMCid:PMC1871894

71. Lu H., Forbes R. A., Verma A. Hypoxia-inducible factor 1 activation by aerobic glycolysis implicates the Warburg effect in cancerogenesis. Journal of Biological Chemistry, 2002; 277(26): 23111-23115.
https://doi.org/10.1074/jbc.M202487200
PMid:11943784

72. Rankin E. B., Giaccia A. J. The role of hypoxia-inducible factors in tumorigenesis. Cell Death and Differentiation, 2008; 15(4): 678-685.
https://doi.org/10.1038/cdd.2008.21
PMid:18259193 PMCid:PMC3050610

73. Lum J. J., Bui T., Gruber M. et al. The transcriptional factor HIF-1a plays a critical role in the growth factor-dependent regulation of both aerobic and anaerobic glycolysis. Genes & Development, 2007; 21(9): 1037-1049.
https://doi.org/10.1101/gad.1529107
PMid:17437992 PMCid:PMC1855230

74. Kenneth N. S., Rocha S. Regulation of gene expression by hypoxia. Biochemical Journal, 2008; 414: 19-29.
https://doi.org/10.1042/BJ20081055
PMid:18651837

75. Brahimi-Horn M. C., Chiche J., Pouysségur J. Hypoxia and cancer. Journal of Molecular Medicine, 2007; 85(12): 1301-1307.
https://doi.org/10.1007/s00109-007-0281-3
PMid:18026916

76. Wenger R. H. Cellular adaptation to hypoxia: O2-sensing protein hydroxylases, hypoxia-inducible transcription factors, and O2-regulated gene expression. FASEB Journal, 2002; 16: 1151-1162.
https://doi.org/10.1096/fj.01-0944rev
PMid:12153983

77. Gleade J. M., Ratcliffe P. J. Hypoxia and the regulation of gene expression. Molecular Medicine Today, 1998; 4: 122-129.
https://doi.org/10.1016/S1357-4310(97)01198-2

78. Minchenko D. O., Bobarykina A. Y., Senchenko T. Y. et al. Expression of the VEGF, Glut1 and 6-phosphofructo-2-kinase/fructose-2,6-bisphosphatase-3 and -4 in human cancers of the lung, colon and stomach. Studia Biologica, 2009; 3(1): 25-34.
https://doi.org/10.30970/sbi.0301.018


Refbacks

  • There are currently no refbacks.


Copyright (c) 2009 Studia biologica

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.