METALLOTHIONEINS AND THE INDICES OF OXIDATIVE DAMAGE IN THE TISSUES OF CARP CYPRINUS CARPIO AS THE BIOMARKERS OF THE ENVIRONMENTAL POLLUTION

H. I. Falfushynska, I. V. Goch, L. I. Bugera, O. B. Stoliar


DOI: http://dx.doi.org/10.30970/sbi.0302.037

Abstract


The content of metallothioneins (MT) determined by two methods (by zinc and copper content and by cadmium saturation), protein carbonyls and superoxide anion have been compared in the liver and gills of carp Cyprinus carpio from two water basins (relatively clean (A) and situated in the industrial site (I)) during three seasons. The temporal dependence is revealed in the A group and less in the I group according to the Factor analysis. The higher levels of MT, protein carbonyls and superoxide anion, as well as low bioavailability of essential metals manganese and, especially, iron were detected in carp from the industrial site.


Keywords


carp, metallothioneins, oxidative damage, heavy metals

References


1. Арсан О.М. Состояние и перспективы развития водной экотоксикологии. Гідробіологічний журнал, 2007; 43(6): 50-64.

2. Барабой В.А., Петрина Л.Г. Металлотионеины: структура и механизмы действия. Український біохімічний журнал, 2003; 75 (4): 28-36.

3. Лущак В.І., Багнюкова Т.В., Лущак О.В. Показники оксидативного стресу. 1. Тіобарбітурактивні продукти і карбонільні групи білків. Український біохімічний журнал, 2004; 76 (3): 136-141.

4. Coyle P., Hubert C.A., Philcox J.C., Rofe A.M. Importance of storage conditions for the stability of zinc- and cadmium-induced metallothionein. Biological Trace Element Research, 2001; 81 (3): 269-278.
https://doi.org/10.1385/BTER:81:3:269

5. Falfushynska H.I., Stoliar O.B. Function of metallothioneins in carp Cyprinus carpio from two field sites in Western Ukraine. Ecotoxicology and Environmental Safety, 2009; 72 (5): 1425-1432.
https://doi.org/10.1016/j.ecoenv.2009.02.013
PMid:19356800

6. Falfushynska H.I., Stoliar O.B. Responses of biochemical markers in carp Cyprinus carpio from two field sites in Western Ukraine. Ecotoxicology and Environmental Safety, 2009; 72 (3): 729-736.
https://doi.org/10.1016/j.ecoenv.2008.04.006
PMid:18514900

7. Hansen B.H., Romma S., Garmo O. A. et al. Antioxidative stress proteins and their gene expression in brown trout (Salmo trutta) from three rivers with different heavy metal levels. Comparative Biochemistry and Physiology, 2006; 143C (3): 263-274.
https://doi.org/10.1016/j.cbpc.2006.02.010
PMid:16616685

8. Hanson P.J. Response of hepatic trace element concentrations in fish exposed to elemental and organic contaminants. Estuaries, 1997; 20 (4): 659-676.
https://doi.org/10.2307/1352242

9. Hassoun E.A., Ray S. The induction of oxidative stress and cellular death by the drinking water disinfection by-products, dichloroacetate and trichloroacetate in J774.A1 cells. Comparative Biochemistry and Physiology, 2003; 135C (2): 119-128.
https://doi.org/10.1016/S1532-0456(03)00082-6

10. Lacorn M., Lahrssen A., Rotzoll N. et al. Quantification of metallothionein isoforms in fish liver and its implications for biomonitoring. Environmental Toxicology and Chemistry, 2001; 20 (1): 140-145.
https://doi.org/10.1002/etc.5620200115
PMid:11351401

11. Lebedynets M., Sprynskyy M., Kowalkowski T., Buszewski B. State of Environment in the Dniester River Basin (West Ukraine). Environmental Science and Pollution Research, 2004; 11 (4): 279-280.
https://doi.org/10.1007/BF02979638
PMid:15341319

12. Lionetto M.G., Giordano M.E., Caricato R. et al. Biomonitoring of heavy metal contamination along the Salento coast (Italy) by metallothionein evaluation in Mytilus galloprovincialis and Mullus barbatus. Aquatic Conservation: Marine and Freshwater Ecosystems, 2001; 11 (4): 305-310.
https://doi.org/10.1002/aqc.458

13. Livingstone D.R. Contaminant-stimulated reactive oxygen species production and oxidative damage in aquatic organisms. Marine Pollution Bulletin, 2001; 42 (8): 656-666.
https://doi.org/10.1016/S0025-326X(01)00060-1

14. Marijić V.F., Raspor B. Age- and tissue-dependent metallothionein and cytosolic metal distribution in a native Mediterranean fish, Mullus barbatus, from the Eastern Adriatic Sea. Comparative Biochemistry and Physiology, 2006; 143С (4): 382-387.
https://doi.org/10.1016/j.cbpc.2005.05.019
PMid:16807124

15. Monserrat J.M., Martínez P.E., Geracitano L.A. et al. Pollution biomarkers in estuarine animals: Critical review and new perspectives. Comparative Biochemistry and Physiology, 2007; 146C (1-2): 221-234.
https://doi.org/10.1016/j.cbpc.2006.08.012
PMid:17045848

16. Paris-Palacios S., Biagianti-Risbourg S., Fouley A., Vernet G. Metallothioneins in liver of Rutilus rutilus exposed to Cu2+. Analysis by metal summation, SH determination and spectrofluorimetry. Comparative Biochemistry and Physiology, 2000; 126C (2): 113-122.
https://doi.org/10.1016/S0742-8413(00)00103-1

17. Paris-Palacios S., Biagianti-Risbourg S., Vernet G. Metallothionein induction related to hepatic structural perturbations and antioxidative defences in roach (Rutilus rutilus) exposed to the fungicide procymidone. Biomarkers, 2003; 8 (2): 128-141.
https://doi.org/10.1080/1354750021000050511
PMid:12775498

18. Regoli F., Pellegrini D., Winston G.W. et al. Application of biomarkers for assessing the biological impact of dredged materials in the Mediterranean: the relationship between antioxidant responses and susceptibility to oxidative stress in the red mullet (Mullus barbatus). Marine Pollution Bulletin, 2002; 44 (9): 912-922.
https://doi.org/10.1016/S0025-326X(02)00120-0

19. Rotchell J.M., Clarke K.R., Newton L.C., Bird D.J. Hepatic metallothionein as a biomarker for metal contamination: age effects and seasonal variation in European flounders (Pleuronectes flesus) from the Severn Estuary and Bristol Channel. Marine Environmental Research, 2001; 52 (2): 151-171.
https://doi.org/10.1016/S0141-1136(00)00270-1

20. Sapoznikova Y., Zubcov N., Hungerford S. et al. Evaluation of pesticides and metals in fish of the Dniester River, Moldova. Chemosphere, 2005; 60 (2): 196 205.
https://doi.org/10.1016/j.chemosphere.2004.12.061
PMid:15914239

21. Stolyar O.B., Loumbourdis N.S., Falfushinska H.I., Romanchuk L.D. Comparison of metal bioavailability in frogs from urban and rural sites of Western Ukraine. Archives of Environmental Contamination and Toxicology, 2008; 54 (1): 107-113.
https://doi.org/10.1007/s00244-007-9012-6
PMid:17680172

22. Velickovska V., Lloyd B.P., Qureshi S., van Breukelen F. Proteolysis is depressed during torpor in hibernators at the level of the 20S core protease. Journal of Comparative Physiology, 2005; 175B (5). 329-335.
https://doi.org/10.1007/s00360-005-0489-x
PMid:15912363

23. Viarengo A., Lafaurie M., Gabrielides G.P. et al. Critical evaluation of an intercalibration exercise undertaken in the framework of the MED POL biomonitoring program. Marine Environmental Research, 2000; 49 (1): 1-18.
https://doi.org/10.1016/S0141-1136(99)00045-8

24. Vogiatzis A., Loumbourdis N.S. Cd accumulation in liver and kidneys and hepatic metallothionein and glutathione levels in Rana ridibunda, after exposure to CdCl2. Archives of Environmental Contamination and Toxicology, 1998; 34 (1): 64-68.
https://doi.org/10.1007/s002449900286

25. Zorita I., Strogyloudi E., Buxens A. et al. Application of two SH-based methods for metallothionein determination in mussels and intercalibration of the spectrophotometric method: laboratory and field studies in the Mediterranean Sea. Biomarkers, 2005; 10 (5): 342-359.
https://doi.org/10.1080/13547500500264645
PMid:16243720


Refbacks

  • There are currently no refbacks.


Copyright (c) 2009 Studia biologica

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.