THE EFFECT OF 2,6-DIMETHYLPYRIDINE N-OXIDE ON COGNITIVE FUNCTIONS AND EMOTIONAL STATE OF RATS FOLLOWING ITS LONG-TERM ORAL ADMINISTRATION

Olesia Vasetska, Inna Rashkivska


DOI: http://dx.doi.org/10.30970/sbi.1803.786

Abstract


Background. Global anthropogenic environmental pollution, intensification of production, daily physical, emotional and psychogenic stress on humans, as well as the working environment provoke a variety of diseases, fatigue, and cognitive impairment, etc. This may be attributed to a reduced nonspecific resistance of the health system and the development of stressful conditions. Therefore, one of the focal points of preventive toxicology is the development of agents with adaptogenic properties that would prevent the occurrence of harmful effects under the influence of stressors. The aim of the present study was to examine the effect of 2,6-dimethylpyridine N-oxide on cognitive functions and emotional status of rats following its long-term oral administration.
Materials and Methods. The plant growth regulator (PGR) Ivin (2,6-dimethylpyridine N-oxide, 99.9%) was chosen for the study. Adaptogen Eleutherococcus was used as a reference agent. The study was conducted on Wistar Hannover rats divided into 2 cohorts. Each cohort included the following groups: 1 – intact animals, 2 – control (distilled water), 3 and 4 – Ivin at doses of 13.0 and 0.013 mg/kg (1/100 and 1/100000 LD50), respectively, 5 – Eleutherococcus at a dose of 50 mg/kg. Exposure period – 28 days, oral route of administration. The state of the central nervous system was assessed by behavioural reactions in the Morris Water Maze and the Elevated Plus Maze.
Results. Ivin at doses of 13 and 0.013 mg/kg increased the ability to learn and to form short- and long-term memory in rats, as evidenced by a decrease in the average time of platform location in the Morris Water Maze test. Ivin at a dose of 0.013 mg/kg significantly increased the number of rearings in closed arms of the Elevated Plus Maze, indicating its anxiolytic effect.
The anti-anxiety effect of Ivin needs to be confirmed by additional studies in the Open Field and/or Hole-board tests. The effectiveness of Ivin in terms of the studied parameters was similar or exceeded those of the known adaptogen Eleutherococcus.


Keywords


2,6-dimethylpyridine N-oxide, cognitive functions, emotional state, rat, Morris Water Maze, Elevated Plus Maze

Full Text:

PDF

References


Biedermann, S. V., Biedermann, D. G., Wenzlaff, F., Kurjak, T., Nouri, S., Auer, M. K., Wiedemann, K., Briken, P., Haaker, J., Lonsdorf, T. B., & Fuss, J. (2017). An elevated plus-maze in mixed reality for studying human anxiety-related behavior. BMC Biology, 15(1), 125. doi:10.1186/s12915-017-0463-6
CrossrefPubMedPMCGoogle Scholar

Bromley-Brits, K., Deng, Y., & Song, W. (2011). Morris water maze test for learning and memory deficits in Alzheimer's disease model mice. Journal of Visualized Experiments, (53), 2920. doi:10.3791/2920
CrossrefPubMedPMCGoogle Scholar

D'Hooge, R., & De Deyn, P. P. (2001). Applications of the Morris water maze in the study of learning and memory. Brain Research Reviews, 36(1), 60-90. doi:10.1016/s0165-0173(01)00067-4
CrossrefPubMedGoogle Scholar

Figueiredo Cerqueira, M. M. de, Castro, M. M. L., Vieira, A. A., Kurosawa, J. A. A., Amaral Junior, F. L. D., Siqueira Mendes, F. C. C., & Sosthenes, M. C. K. (2023). Comparative analysis between Open Field and Elevated Plus Maze tests as a method for evaluating anxiety-like behavior in mice. Heliyon, 9(4), e14522. doi:10.1016/j.heliyon.2023.e14522
CrossrefPubMedPMCGoogle Scholar

File, S. E., & Wardill, A. G. (1975). Validity of head-dipping as a measure of exploration in a modified hole-board. Psychopharmacologia, 4(1), 53-59. doi:10.1007/bf00421184
CrossrefPubMedGoogle Scholar

Grishko, V. M., & Demura, T. A. (2009). Influence of growth regulators on maize seedlings resistance, lipid peroxidation processes development and ascorbic acid content at cadmium and nickel joint action. Physiology and Biochemistry of Cultivated Plants, 41(4), 335-43. (In Ukrainian)
Google Scholar

Hall, C. S. (1936). Emotional behavior in the rat. III. The relationship between emotionality and ambulatory activity. Journal of Comparative Psychology, 22(3), 345-352. doi:10.1037/h0059253
CrossrefGoogle Scholar

Hånell, A., & Marklund, N. (2014). Structured evaluation of rodent behavioral tests used in drug discovery research. Frontiers in Behavioral Neuroscience, 8, 252. doi:10.3389/fnbeh.2014.00252
CrossrefPubMedPMCGoogle Scholar

Havrys, I. L., Tsygankova, V. A., & Ponomarenko, S. P. (2013). Vykorystannia rehuliatoriv rostu na roslynakh pomidora u zymovykh teplytsiakh [The use of growth regulators on tomato plants in winter greenhouses]. Vinnytsia: Nilan. (In Ukrainian)
Google Scholar

Kalka, N. M. (2015). Profilaktyka i podolannia syndromu khronichnoi vtomy u pratsivnykiv OVS [Prevention and overcoming of chronic fatigue syndrome in employees of the Internal Affairs]. Lviv: LvDUVS. (In Ukrainian)
Google Scholar

Magrelo, N. V., & Magrelo, V. R. (2023, June). Profilaktychni zakhody nehatyvnoho vplyvu zovnishnoho seredovyshcha na orhanizm produktyvnykh tvaryn [Preventive measures of the negative impact of the external environment on the organism of productive animals]. Conferences of LNU of Veterinary Medicine and Biotechnologies (pp. 74-76). doi:10.32718/konf.1-2.06.2023 (In Ukrainian)
CrossrefGoogle Scholar

Marakushin, D. I., Chernobay, L. V., Isaeva, I. M., Karmazina, I. S., Vashchuk, M. A., Alekseenko, R. V., Bulinina, A. D., & Zelenskaya, G. M. (2020). Functional body reserves as an indicator of the regulatory processes effectiveness ensuring the body adaptation to the environmental factors. Ukrainian Journal of Medicine, Biology and Sports, 5(1), 21-28. doi:10.26693/jmbs05.01.021 (In Ukrainian)
CrossrefGoogle Scholar

Morris, R. (1984). Developments of a water-maze procedure for studying spatial learning in the rat. Journal of Neuroscience Methods, 11(1), 47-60. doi:10.1016/0165-0270(84)90007-4
CrossrefPubMedGoogle Scholar

Moser, V. C. (2000). The functional observational battery in adult and developing rats. Neurotoxicology, 21(6), 989-996.
PubMedGoogle Scholar

Nakonechnaya, O. A., Marakushin, D. I., Stetsenko, S. A., Zakirova, S. V., & Artugina, L. I. (2013). Contemporary views of adaptation mechanisms to the action xenobiotics. Experimental and Clinical Medicine, 61(4), 29-33. Retrieved from https://ecm.knmu.edu.ua/article/view/111 (In Ukrainian)
Google Scholar

Nanjappaiah, H. M., Patil, V. P., MuchchandiI, S., Chandrashekar, V. M., & Shivakumar, H. (2017). Screening of antistress and anxiolytic activities of Piper longum fruits extract. Pharmaceutical and Biosciences Journal, 01-11. doi:10.20510/ukjpb/5/i4/155957
CrossrefGoogle Scholar

Ponomarenko, S. P., & Iutynska, H. O. (Eds.). (2011). New plant growth regulators: basic research and technologies of application. Kyiv: Nichlava.
Google Scholar

Ryabchenko, N. A., Mochalov, V. V., & Lisitskaya, S. M. (2006). Vliyanie regulyatorov rosta rastenii na vozmozhnost snizheniya insektitsidnoi nagruzki v agrotsenozakh ozimoi pshenitsi [Effect of plant growth regulators on possibility of reduction of insecticide load in agrocenoses of winter wheat]. Visnyk of Dnipropetrovsk University. Biology, ecology, 1(14), 160-164. Retrieved from https://www.dnu.dp.ua/docs/visnik/fbem/program_5e53fc4167202.pdf (In Russian)
Google Scholar

State register of pesticides and agrochemicals approved for use in Ukraine (2024). Version 1.0. Last updated May 29, 2024. Retrieved from https://data.gov.ua/dataset/389ddb5a-ac73-44bb-9252-f899e4a97588/resource/91d666b6-e4d4-40d7-86c3-a09a0ffa92dc

Stefanov, O. V. (Ed.). (2001). Doklinichni doslidzhennia likarskykh zasobiv [Preclinical studies of medicinal products]. Kyiv: Avicena. Retrieved from https://pubmed.com.ua/xmlui/handle/123456789/77 (In Ukrainian)
Google Scholar

Todorova, V., Ivanov, K., Delattre, C., Nalbantova, V., Karcheva-Bahchevanska, D., & Ivanova, S. (2021). Plant adaptogens-history and future perspectives. Nutrients, 13(8), 2861. doi:10.3390/nu13082861
CrossrefPubMedPMCGoogle Scholar

Vasetska, O. , Prodanchuk, M., Kravchuk, O., Zhminko, P., & Zubko, O. (2021). Effect of 2,6-dimethylpyridine-N-oxide on the severity of cytogenetic effects induced by dioxidine in bone marrow cells of mice. Georgian Medical News, 314(5), 139-145.
PubMedGoogle Scholar

Vasetska, O. P., Prodanchuk, M. G., & Verys, T. M. (2023a). The state of the prooxidant and antioxidant systems of the rat under the single application of some methyl derivatives of pyridine N-oxide - Ivin and Poteitin. Ukrainian Journal of Modern Toxicological Aspects, 94(1), 55-71. doi:10.33273/2663-4570-2023-94-1-55-71
Crossref

Vasetska, O. P., Lisovska, V. S., Prodanchuk, M. H., & Zhminko, P. H. (2023b). Hepatoprotective effect of 2,6-dimethylpyridine N-oxide (Ivin) in experimental model of CCl(4)-induced hepatitis of rats. Ukrainian Biochemical Journal, 95(4), 35-45. doi:10.15407/ubj95.04.035
CrossrefGoogle Scholar

Vasetska, O. P., & Zhminko, P. H. (2021). Biological activity and toxicological properties of plant growth regulators - methyl derivatives of N-oxidepyridine. In A. I. Vovk (Ed.), Syntez i bioaktyvnist funktsionalizovanykh azotovmisnykh heterotsykliv [Synthesis and bioactivity of functionalized nitrogen-containing heterocycles] (pp. 288-324). Kyiv: Interservice. Retrieved from https://drive.google.com/file/d/1pNYtByPb-H-XxZKdrY0LzOUXOEC628t4/view (In Ukrainian)

Vasetska, O. P., Prodanchuk, M. G., & Zhminko, P. G. (2022). Antihypoxic activity of 2,6-dimethylpyridine-N-oxide. Wiadomości Lekarskie, 75(12), 2974-2981. doi:10.36740/wlek202212114
CrossrefPubMedGoogle Scholar

Vorhees, C. V., & Williams, M. T. (2006). Morris water maze: procedures for assessing spatial and related forms of learning and memory. Nature Protocols, 1(2), 848-858. doi:10.1038/nprot.2006.116
CrossrefPubMedPMCGoogle Scholar

Vyunytska, L. V. (2018). Funktsionalni mekhanizmy systemy hemostazu yak komponent stres-vidpovidi [Functional mechanisms of the homeostasis system as a component of the stress response]. Laboratory Diagnostics, 2(81), 20-30. (In Ukrainian)
Google Scholar

Vyunytska, L. V., Yuzvenko, T. Yu., Dashuk, T. I., & Pankiv, V. I. (2022). Stress-induced changes in a body's vital functions. Review. Clinical Endocrinology and Endocrine Surgery, 2, 49-60. doi:10.30978/cees-2022-2-49 (In Ukrainian)
CrossrefGoogle Scholar

Walf, A. A., & Frye, C. A. (2007). The use of the elevated plus maze as an assay of anxiety-related behavior in rodents. Nature Protocols, 2(2), 322-328. doi:10.1038/nprot.2007.44
CrossrefPubMedPMCGoogle Scholar

Yermishev, O. V., & Marchak, T. V. (2020). Functional and ecological expertise in Shargorod district in Vinnytsia region. Scientific Bulletin of UNFU, 30(4), 85-91. doi:10.36930/40300415 (In Ukrainian)
CrossrefGoogle Scholar

Zarudna, O. I., & Mural, N. I. (2015). Chronic fatique syndrom and modern society. Nursing, (4). Retrieved from https://ojs.tdmu.edu.ua/index.php/nursing/article/view/5393/4957 (In Ukrainian)
Google Scholar


Refbacks

  • There are currently no refbacks.


Copyright (c) 2024 Olesia Vasetska, Inna Rashkivska

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.