STORE-OPERATED Ca2+-ENTRY INTO THE SECRETORY CELLS OF DROSOPHILA MELANOGASTER LARVAL SALIVARY GLANDS

T. Chorna, G. Hasan, V. V. Manko


DOI: http://dx.doi.org/10.30970/sbi.0301.025

Abstract


Confocal microscopy enabled the identification of store-operated Ca2+ entry in the sec­retory cells of Drosophila melanogaster larval salivary glands, which expresses Ca2+ sensor G-CaMP1.6. To release Са2+ from intracellular stores, we used Са2+ ionophore ionomycin and endoplasmic reticulum Са2+-pump inhibitor thapsigargin. Addition of these compounds to the Са2+-free medium caused slight and non-transient elevation of the cytosolic Са2+ concentration in the secretory cells. After an increase of Са2+ concentration at 2 mmol/l, a significant increase in cytosolic Са2+ level appeared in both cases. Although under the use of ionomycin, an increase of cytosolic Са2+ was transient in all cases, Саe2+-induced Са2+-transients from different cells of investigated gland’s region were synchronous, and determined by activation of store-operated Са2+ entry as well as by its entry from extracellular medium under the ionophoretic exchange. In case of emptying stores by thapsigargin, an increase of extracellular Са2+ concentration induced in part of the cells, fast transients of cytosolic Са2+, in some part – slow primary transients, which changes by non-transient elevation of cytosolic Са2+ level, and in another part – only non-transient increase of cytosolic Са2+ level. Such differen­ces of Саe2+-induced Са2+-transients in different cells is determined, perhaps, by the fact that their generation involved only store-operated Са2+-channels as far as other Са2+-transport systems of plasma membrane and intracellular organelles.


Keywords


secretory cells, salivary glands, store-operated Ca2+ entry, Ca2+-transients, ionomycin, thapsigargin, Drosophila melanogaster, confocal microscopy

References


1. Манько В.В. Методологічні підходи до дослідження Na+-Ca2+-обміну в екзокринних секреторних клітинах. Укр. біохім. журн, 2006; 78(1): 43-62.

2. Чорна Т.І., Манько В.В., Клевець М.Ю. Ідентифікація потенціалокерованого входу Са2+ у секреторні клітини слинних залоз личинки Drosophila melanogaster. Експерим. та клін. фізіологія і біохімія, 2007; № 2: 29-34.

3. Broad L.M., Braun F.J., Lievremont J.P. et al. Role of the phospholipase C-inositol 1,4,5-trisphosphate pathway in calcium release-activated calcium current and capacitative calcium entry. J. Biol. Chem, 2001; 276(19): 15945-15952.
https://doi.org/10.1074/jbc.M011571200
PMid:11278938

4. Chorna T.I., Hasan G., Man'ko V.V., Klevets M.Yu. Genes expression of calcium signaling molecules in salivary glands of Drosophila melanogaster larvae. Укр. біохім. журн, 2009; 81(1): 39-42.

5. Chvanov M., Walsh C.M., Haynes L.P. et al. ATP depletion induces translocation of STIM1 to puncta and formation of STIM1-ORAI1 clusters: translocation and re-translocation of STIM1 does not require ATP. Pflugers Arch, 2008; 457(2): 505-517.
https://doi.org/10.1007/s00424-008-0529-y
PMid:18542992 PMCid:PMC2770109

6. Erdahl W.L., Chapman C.J., Taylor R.W. et al. Effect of pH conditions on Ca2+ transport catalazed by ionophores A23187, 4-BrA23187, and ionomycin suggest problems with common applications of these compounds in biological systems. Biophys. J, 1994; 66: 1678-1693.
https://doi.org/10.1016/S0006-3495(94)80959-2

7. Feske S., Gwack Y., Prakriya M. et al. A mutation in Orai1 causes immune deficiency by abrogating CRAC channel function. Nature, 2006; 441: 179-185.
https://doi.org/10.1038/nature04702
PMid:16582901

8. Glitsch M.D., Bakowski D., Parekh A.B. Store-operated Ca2+ entry depends on mitochondrial Ca2+ uptake. EMBO J, 2002; 21(24): 6744-6754.
https://doi.org/10.1093/emboj/cdf675
PMid:12485995 PMCid:PMC139095

9. Gwack Y., Srikanth S., Feske S. et al. Biochemical and functional characterization of Orai1-family proteins. J. Biol. Chem, 2007; 282(22): 16232-16243.
https://doi.org/10.1074/jbc.M609630200
PMid:17293345

10. Krause E., Pfeiffer F., Schmid A., Schulz I. Depletion of intracellular calcium stores activates a calcium conducting nonselective cation current in mouse pancreatic acinar cells. J. Biol. Chem, 1996; 271(51): 32523-32528.
https://doi.org/10.1074/jbc.271.51.32523
PMid:8955076

11. Mogami H., Nakano K., Tepikin A.V., Petersen O.H. Ca2+ flow via tunnels in polarized cells: recharging of apical Ca2+ stores by focal Ca2+ entry through basal membrane patch. Cell, 1997; 88: 49-55.
https://doi.org/10.1016/S0092-8674(00)81857-7

12. Liou J., Kim M.L., Heo W.D. et al. STIM is a Ca2+ sensor essential for Ca2+-store-depletion-triggered Ca2+ influx. Curr. Biol, 2005; 15: 1235-1241.
https://doi.org/10.1016/j.cub.2005.05.055
PMid:16005298 PMCid:PMC3186072

13. Liu X., O'Connell A., Ambudkar I.S. Ca2+-dependent inactivation of a store-operated Ca2+ current in human submandibular gland cells. Role of a staurosporine-sensitive protein kinase and intracellular Ca2+ pump. J. Biol. Chem, 1998; 273: 33295-33304.
https://doi.org/10.1074/jbc.273.50.33295
PMid:9837902

14. Liu X., Liao D., Ambudkar I.S. Distinct mechanisms of [Ca2+]i oscillations in HSY and HSG cells: role of Ca2+ influx and internal Ca2+ store recycling. J. Membrane Biol, 2001; 181: 185-193.
https://doi.org/10.1007/s00232-001-0020-6

15. Liu X., Groschner K., Ambudkar I.S. Distinct Ca2+-permeable cation currents are activated by internal Ca2+-store depletion in RBL-2H3 cells and human salivary gland cells, HSG and HSY. J. Membrane Biol, 2004; 200: 93-104.
https://doi.org/10.1007/s00232-004-0698-3
PMid:15520907

16. Liu X., Cheng K.T., Bandyopadhyay B.C. et al. Attenuation of store-operated Ca2+ current impairs salivary gland fluid secretion in TRPC1(-/-) mice. PNAS, 2007; 104(44): 17542-17547.
https://doi.org/10.1073/pnas.0701254104
PMid:17956991 PMCid:PMC2077292

17. Nakai J., Ohkura M., Imoto K. A high signal-to-noise Ca2+ probe composed of a single green fluorescent protein. Nature Biotech, 2001; 19: 137-141.
https://doi.org/10.1038/84397
PMid:11175727

18. Ohkura M., Matsuzaki M., Kasai H. Genetically encoded bright Ca2+ probe applicable for dynamic Ca2+ imaging of dendritic spines. Anal. Chem, 2005; 77: 5861-5869.
https://doi.org/10.1021/ac0506837
PMid:16159115

19. Parekh A.B., Penner R. Store depletion and calcium influx. Physiol. Rev, 1997; 77: 901-930.
https://doi.org/10.1152/physrev.1997.77.4.901
PMid:9354808

20. Parekh A.B., Putney J.W. Jr. Store operated calcium channels. Physiol. Rev, 2005; 85: 757-810.
https://doi.org/10.1152/physrev.00057.2003
PMid:15788710

21. Prakriya M., Feske S., Gwack Y. et al. Orai1 is an essential pore subunit of the CRAC channel. Nature, 2006; 443: 230-233.
https://doi.org/10.1038/nature05122
PMid:16921383

22. Putney J.W. Jr. Capacitative calcium entry in the nervous system. Cell Calcium, 2003; 34: 339-344.
https://doi.org/10.1016/S0143-4160(03)00143-X

23. Putney J.W. Jr. New molecular players in capacitative Ca2+ entry. J.Cell Sci, 2007; 120(12): 1959-1965.
https://doi.org/10.1242/jcs.03462
PMid:17478524 PMCid:PMC2096666

24. Roos J., DiGregorio P.J., Yeromin A.V. et al. STIM1, an essential and conserved component of store-operated Ca2+ channel function. JCB, 2005; 169(3): 435-445.
https://doi.org/10.1083/jcb.200502019
PMid:15866891 PMCid:PMC2171946

25. Yeromin A. V., Zhang S. L., Jiang W. et al. Molecular identification of the CRAC channel by altered ion selectivity in a mutant of Orai. Nature, 2006; 443: 226-229.
https://doi.org/10.1038/nature05108
PMid:16921385 PMCid:PMC2756048


Refbacks

  • There are currently no refbacks.


Copyright (c) 2009 Studia biologica

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.