GENETIC AND DEVELOPMENTAL CHANGES AT EARLY STAGES OF CHIROPTERAN EVOLUTION: A BRIEF REVIEW

I. I. Dzeverin


DOI: http://dx.doi.org/10.30970/sbi.0403.119

Abstract


Recent studies have revealed genetic and developmental changes responsible for the emergence of powered flight and echolocation at early stages of evolution in the bats (Chiroptera). These unique features seem to have been arisen via changes in both structural genes and the systems of gene regulation.


Keywords


Chiroptera, evolution, structural genes, gene regulation, bat wing, echolocation

References


1. Айрапетьянц Э. Ш., Константинов А. И. Эхолокация в природе. Л.: Наука, 1970. 379 с.

2. Банникова А. А. Молекулярные маркеры и современная филогенетика млекопитающих. Журнал общей биологии, 2004; 65(4): 278-305.

3. Ґхазалі М. А. Ехолокація кажанів. Хімія. Біологія, 2004; 26: 1-13.

4. Кимура М. Молекулярная эволюция: теория нейтральности. Пер. с англ. М.: Мир, 1985. 394 с.

5. Кэрролл Р. Палеонтология и эволюция позвоночных. Т. 3. Пер. с англ. М.: Мир, 1993. 312 с.

6. Марков А. В. Происхождение и эволюция человека. Обзор достижений палеоантропологии, сравнительной генетики и эволюционной психологии. Журнал общей биологии, 2009; 70(5): 359-371.

7. Симмонс Н. Встать на крыло. В мире науки, 2009; № 3: 50-59.

8. Шмальгаузен И. И. Пути и закономерности эволюционного процесса. Избранные труды. М.: Наука, 1983. 360 с.

9. Castoe T. A., de Koning A. P. J., Kim H.-M. et al. Evidence for an ancient adaptive episode of convergent molecular evolution. Proc. Natl Acad. Sci. USA, 2009; 106(22): 8986-8991.
https://doi.org/10.1073/pnas.0900233106
PMid:19416880 PMCid:PMC2690048

10. Charlesworth B., Lande R., Slatkin M. A neo-Darwinian commentary on macroevolution. Evolution, 1982; 36(3): 474-498.
https://doi.org/10.1111/j.1558-5646.1982.tb05068.x
PMid:28568049

11. Cooper K. L., Tabin C. J. Understanding of bat wing evolution takes flight. Genes & Development, 2008; 22: 121-124.
https://doi.org/10.1101/gad.1639108
PMid:18198331 PMCid:PMC2731632

12. Cretekos C. J., Deng J.-M., Green E. D. et al. Isolation, genomic structure and developmental expression of Fgf8 in the short-tailed fruit bat, Carollia perspicillata. Int. J. Dev. Bio, 2007; 51: 333-338.
https://doi.org/10.1387/ijdb.062257cc
PMid:17554686

13. Cretekos C. J., Wang Y., Green E. D. et al. Regulatory divergence modifies limb length between mammals. Genes & Development, 2008; 22: 141-151.
https://doi.org/10.1101/gad.1620408
PMid:18198333 PMCid:PMC2192750

14. Dallos P., Fakler B. Prestin, a new type of motor protein. Nature Reviews: Molecular Cell Biology, 2002; 3: 104-111.
https://doi.org/10.1038/nrm730
PMid:11836512

15. Dzeverin I. The stasis and possible patterns of selection in evolution of a group of related species from the bat genus Myotis (Chiroptera, Vespertilionidae). J. Mammal. Evol, 2008; 15(2): 123-142.
https://doi.org/10.1007/s10914-007-9071-5

16. Dzeverin I., Ghazali M. Evolutionary mechanisms affecting the multivariate divergence in some Myotis species (Chiroptera, Vespertilionidae). Evol. Biol, 2010; 37(2-3): 100-112.
https://doi.org/10.1007/s11692-010-9086-3

17. Enard W., Przeworski M., Fisher S. E.et al. Molecular evolution of FoxP2, a gene involved in speech and language. Nature, 2002; 418: 869-872.
https://doi.org/10.1038/nature01025
PMid:12192408

18. Evans P. D., Anderson J. R., Vallender E. J. et al. Adaptive evolution of ASPM, a major determinant of cerebral cortical size in humans. Human Molecular Genetics, 2004; 13(5): 489-494.
https://doi.org/10.1093/hmg/ddh055
PMid:14722158

19. Evans P. D., Anderson J. R., Vallender E. J. et al. Reconstructing the evolutionary history of microcephalin, a gene controlling human brain size. Human Molecular Genetics, 2004; 13(11): 1139-1145.
https://doi.org/10.1093/hmg/ddh126
PMid:15056607

20. Gunnell G. F., Simmons N. B. Fossil evidence and the origin of bats. J. Mammal. Evol, 2005; 12(1/2): 209-246.
https://doi.org/10.1007/s10914-005-6945-2

21. Gunnell G. F., Jacobs B. F., Herendeen P. S.et al. Oldest placental mammal from sub-Saharan Africa: Eocene microbat from Tanzania Evidence for early evolution of sophisticated echolocation. Palaeontologica Electronica, 2003; 5(3). 10 p.

22. Hahn M. W. Towards a selection theory of molecular evolution. Evolution, 2008; 62(2): 255-265.
https://doi.org/10.1111/j.1558-5646.2007.00308.x
PMid:18302709

23. Honeycutt R. L. Small changes, big results: evolution of morphological discontinuity in mammals. J. Biol, 2008; 7:9. 4 p.
https://doi.org/10.1186/jbiol71
PMid:18355400 PMCid:PMC2323037

24. Jepsen G. L. Early Eocene bat from Wyoming. Science, 1966; 154(3754): 1333-1339.
https://doi.org/10.1126/science.154.3754.1333
PMid:17770307

25. Jones G. Scaling of echolocation call parameters in bats. J. Exptl Biol, 1999; 202: 3359-3367.

26. Kimura M. Evolutionary rate at the molecular level. Nature, 1968; 217: 624-626.
https://doi.org/10.1038/217624a0
PMid:5637732

27. Kimura M., Ohta T. On some principles governing molecular evolution. Proc. Natl Acad. Sci. USA, 1974; 71(7): 2848-2852.
https://doi.org/10.1073/pnas.71.7.2848
PMid:4527913 PMCid:PMC388569

28. King J. L., Jukes T. H. Non-Darwinian evolution. Science, 1969; 164(3881): 788-798.
https://doi.org/10.1126/science.164.3881.788
PMid:5767777

29. Li G., Wang J., Rossiter S. J., Jones G. et al. The hearing gene Prestin reunites echolocating bats. Proc. Natl Acad. Sci. USA, 2008; 105(37): 13959-13964.
https://doi.org/10.1073/pnas.0802097105
PMid:18776049 PMCid:PMC2544561

30. Li G., Wang J., Rossiter S. J. et al. Accelerated FoxP2 evolution in echolocating bats. PloS ONE, 2007; 2(9): e900. 10 p.
https://doi.org/10.1371/journal.pone.0000900
PMid:17878935 PMCid:PMC1976393

31. Li Y., Liu Z., Shi P., Zhang J. The hearing gene Prestin unites echolocating bats and whales. Current Biology, 2010; 20(2): R55-R56.
https://doi.org/10.1016/j.cub.2009.11.042
PMid:20129037

32. Liu Y., Cotton J. A., Shen B.et al. Convergent sequence evolution between echolocating bats and dolphins. Current Biology, 2010; 20(2): R53-R54.
https://doi.org/10.1016/j.cub.2009.11.058
PMid:20129036

33. Mayer F., von Helversen O. Cryptic diversity in European bats. Proc. R. Soc. Lond. B, 2001; 268: 1825-1832.
https://doi.org/10.1098/rspb.2001.1744
PMid:11522202 PMCid:PMC1088815

34. Mayer F., Dietz C., Kiefer A. Molecular species identification boosts bat diversity. Frontiers in Zoology, 2007; 4(4). 5 p.
https://doi.org/10.1186/1742-9994-4-4
PMid:17295921 PMCid:PMC1802075

35. Ray R., Capecchi M. An examination of the Chiropteran HoxD locus from an evolutionary perspective. Evolution & Development, 2008; 10(6): 657-670.
https://doi.org/10.1111/j.1525-142X.2008.00279.x
PMid:19021736

36. Ruedi M., Mayer F. Molecular systematics of bats of the genus Myotis (Vespertilionidae) suggests deterministic ecomorphological convergences. Mol. Phylogen. Evol, 2001; 21: 436-448.
https://doi.org/10.1006/mpev.2001.1017
PMid:11741385

37. Sears K. E. Molecular determinants of bat wing development. Cells Tissues Organs, 2008; 187: 6-12.
https://doi.org/10.1159/000109959
PMid:18160799

38. Sears K. E., Behringer R. R., Rasweiler J. J. IV, Niswander L. A. Development of bat flight: Morphologic and molecular evolution of bat wing digits. Proc. Natl Acad. Sci. USA, 103(17): 6581-6586.
https://doi.org/10.1073/pnas.0509716103
PMid:16618938 PMCid:PMC1458926

39. Simmons N. B. Order Chiroptera. Mammal species of the world. In: A taxonomic and geographic reference. D. E. Wilson, D. M. Reeder (eds.). Baltimore: Johns Hopkins University Press, 2005: 312-529.

40. Simmons N. B., Geisler J. H. Phylogenetic relationships of Icaronycteris, Archaeonycteris, Hassianycteris, and Palaeochiropteryx to extant bat lineages, with comments on the evolution of echolocation and foraging strategies in Microchiroptera. Bull. Amer. Mus. Natur. Hist, 1998; 235: 1-182.

41. Simmons N. B., Seymour K. L., Habersetzer J., Gunnell G. F. Primitive early Eocene bat from Wyoming and the evolution of flight and echolocation. Nature, 2008; 451: 818-822.
https://doi.org/10.1038/nature06549
PMid:18270539

42. Springer M. S., Teeling E. C., Madsen O.et al. Integrated fossil and molecular data reconstruct bat echolocation. Proc. Natl. Acad. Sci. USA, 2001; 98(11): 6241-6246.
https://doi.org/10.1073/pnas.111551998
PMid:11353869 PMCid:PMC33452

43. Tabuse R., Antunes M. Sigé B. A new primitive bat from the earliest Eocene of Europe. J. Vertebr. Paleont, 2009; 29(2): 627-630.
https://doi.org/10.1671/039.029.0204

44. Teeling E. C., Springer M. S., Madsen O.et al. A molecular phylogeny for bats illuminates biogeography and the fossil record. Science, 2005; 307: 580-584.
https://doi.org/10.1126/science.1105113
PMid:15681385

45. Vallender E. J., Lahn B. T. Positive selection on the human genome. Human Molecular Genetics, 2004; 13(Review Issue 2): R245-R254.
https://doi.org/10.1093/hmg/ddh253
PMid:15358731

46. Weatherbee S. D., Behringer R. R., Rasweiler J. J. IV, Niswander L. A. Interdigital webbing retention in bat wings illustrates genetic changes underlying amniote limb diversification. Proc. Natl Acad. Sci. USA, 2006; 103(41): 15103-15107.
https://doi.org/10.1073/pnas.0604934103
PMid:17015842 PMCid:PMC1622783

47. Zheng J., Shen W., He D. Z. Z. et al. Prestin is the motor protein of cochlear outer hair cells. Nature, 2000; 205: 149-155.
https://doi.org/10.1038/35012009
PMid:10821263


Refbacks

  • There are currently no refbacks.


Copyright (c) 2010 Studia biologica

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.