THE PURPLE PHOTOSYNTHETIC SULFUR BACTERIA OF GENUS CHROMATIUM, ISOLATED FROM LAKES YAVORIVSKE (LVIV REGION) AND SAKSKE (AR CRIMEA)

S. V. Lavryk, Iu. O. Pavlova, S. O. Hnatush


DOI: http://dx.doi.org/10.30970/sbi.0402.091

Abstract


The photosynthetic purple sulfur bacteria were isolated from lakes Yavorivske (Lviv region) and Sakske (AR Crimea). The purple sulfur bacteria use reduced sulfur compounds as electron donors for anoxygenic photosynthesis. The elemental sulfur produced by these microorganisms as intermediate in the oxidation of thiosulfate or hydrogen sulfide to sulfate. The bacteria strains Ya2008/С and Sa2008/D with highest intracellular sulfur content have been choose for next investigation. Their morphophysiology characteristics, pigment content, the resistances to hydrogen sulfide, utilization of H2S and intracellular sulfur during photolitoautotrophic growth were investigated. Strains Ya2008/С and Sa2008/D according to their morphophysiology characteristics were identified to genus Chromatium.


Keywords


purple sulfur bacteria, Chromatium, intracellular sulfur, carotenoids, bacteriochlorophyll a

References


1. Кондратьева Е.Н. Фотосинтезирующие бактерии. Москва: Изд-во Москов. ун-та, 1989. 346 с.

2. Мусієнко М.М., Паршикова Т.В., Славний П.С. Спектрофотометричні методи в практиці фізіології, біохімії та екології рослин. Київ: Фітосоціоцентр, 2001. 200 с.

3. Павлова Ю.О., Гудзь С.П. Бактерії родини Chromatiaceae, виділені з озера "Яворівське" Язівського сіркового родовища. Вісник Харківського національного університету. Серія біологія, 2008; 7(14): 148-154.

4. Павлова Ю.О., Гудзь С.П. Використання гідроген сульфіду та нагромадження елементної сірки в клітинах Thiocystis sp. Ya2006. Мікробіологія і біотехнологія, 2008; (1): 79-85.
https://doi.org/10.18524/2307-4663.2008.1(2).104273

5. Хоулт Д., Криг Н., Снит П. и др. Определитель бактерий Берджи. Москва: Мир, 1997. 540 с.

6. Britton G. General carotenoid methods. Meth. Enzymol, 1985; 3 (В): 113-145.
https://doi.org/10.1016/S0076-6879(85)11007-4

7. Bryantseva I.A., Gorlenko V.M., Kompantseva E.I. Thiorhodospira sibirica gen.nov., sp. nov., a new alkaliphilic purple sulfur bacterium from a Siberian soda lake. Int. J. Syst. Bacteriol, 1999; 49: 697-703.
https://doi.org/10.1099/00207713-49-2-697
PMid:10319493

8. Camacho A., Rochera C. Silvestre spatial dominance and inorganic carbon assimilation by conspicuous autotrophic biofilms in a physical and chemical gradient of a cold sulfurous spring: the role of differential ecological strategies. Microb. Ecol, 2005; 50 (2): 172-184.
https://doi.org/10.1007/s00248-004-0156-x
PMid:16211325

9. Gemerden H. Growth measurements of Chromatium cultures. Arсh. Mikrobiol, 1968; 64: 103-110.
https://doi.org/10.1007/BF00406968
PMid:4886553

10. Guerrero R., Piqueras M., Berlanga M. Microbial mats and the search for minimal ecosystems. Int. Microbiol, 2002; 5: 177-188.
https://doi.org/10.1007/s10123-002-0094-8
PMid:12497183

11. Imhoff J. Caumette P. Recommended standards for description of new species of anoxygenic phototrophic bacteria. Int. J. Syst. Bacteriol, 2004; 54: 1415-1421.
https://doi.org/10.1099/ijs.0.03002-0
PMid:15280323

12. Imhoff J.F., Sahl H.G., Soliman G.S. The Wadi Natrun: chemical composition and microbial mass developments in alkaline brines of eutrophic desert lakes. Geomicrobiology, 1979; 1: 219-234.
https://doi.org/10.1080/01490457909377733

13. Koizumi Y., Kojima K., Oguri K. Vertical and temporal shifts of microbial communities in the water column and sediment of saline meromictic Lake Kaiike (Japan), as determinated by a 16S rDNA-based analysis, and related to physicochemical gradients. Appl. Environ. Microbiol, 2004; 6: 622-637.
https://doi.org/10.1111/j.1462-2920.2004.00620.x
PMid:15142251

14. Pfennig N., Trüper H., Balows A., Dworkin M. The Prokaryotes. New York: Springer-Verlag, 1992: 3200-3221.
https://doi.org/10.1007/978-1-4757-2191-1_8

15. Raymond J.C., Sistrom W.R. The isolation and preliminary characterization of a halophilic photosynthetic bacterium. Arch. Mikrobiol, 1967; 59: 255-268.
https://doi.org/10.1007/BF00406339
PMid:4880241

16. Reynolds E.S. The use of lead citrate at pH as an electronopaque stain in electron microscopy. J. Cell Biol, 1963; 17: 208-212.
https://doi.org/10.1083/jcb.17.1.208
PMid:13986422 PMCid:PMC2106263

17. Roeselers G., Norris T., Castenholz R. Diversity of phototrophic bacteria in microbial mats from Arctic hot springs (Greenland). Environ. Microbiol, 2007; 9 (1): 26-38.
https://doi.org/10.1111/j.1462-2920.2006.01103.x
PMid:17227409

18. Sorensen K., Canfield D., Oren A. Salinity responses of benthic microbial communities in a solar saltern (Eilat, Israel). Appl. Environ. Microbiol, 2004; 70 (3): 1608-1616.
https://doi.org/10.1128/AEM.70.3.1608-1616.2004
PMid:15006785 PMCid:PMC368310

19. ГОСТ 26426-85. Почвы. Метод определения ионов сульфата в водной вытяжке. Москва: Изд-во стандартов, 1985.

20. Пат.6340596 США, МКИ G 01 N33/00. Reagent composition for measuring hydrogen sulfide and method for measuring hydrogen / Masami Sugiyama (Японія); Fujirebio Inc. № 248316; Заявл. 02.01. 1999; Опубл. 22.01.2002; НКИ 436.121. 9 с.


Refbacks

  • There are currently no refbacks.


Copyright (c) 2010 Studia biologica

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.