EXPRESSION OF RECOMBINANT HUMAN ARGININOSUCCINATE SYNTHETASE IN ESCHERICHIA COLI

O. I. Vovk, Y. A. Rzhepetskyy, H. G. Pereverzeva, O. V. Stasyk


DOI: http://dx.doi.org/10.30970/sbi.0503.173

Abstract


Escherichia coli strain BL21(DE3)/pET42a/ASS – an efficient producer of recombinant human argininosuccinate synthetase (rhASS) – was constructed, and preparations of purified rhASS were obtained using His-tag affinity chromatography. The effect of specific inhibitor, α-methyl-DL-aspartate, and nitric oxide donor, sodium nitroprusside, on the ASS specific activity was evaluated with purified rhASS protein and in mouse liver lysates. The developed expression platform is a useful tool in search for new ASS inhibitors efficient under in vitro and in vivo conditions.


Keywords


argininosuccinate synthetase, arginine biosynthesis, recombinant protein expression, affinity purification

Full Text:

PDF

References


1. Berning C., Bieger I., Pauli S. et al. Investigation of Citrullinemia Type I Variants by In Vitro Expression Studies. Human Mutation, 2008; 29(10): 1222-1227.
https://doi.org/10.1002/humu.20784
PMid:18473344

2. Bobak Y.P., Vynnytska B.O., Kurlishchuk Y.V. et al. Cancer cell sensitivity to arginine deprivation in vitro is not determined by endogenous levels of arginine metabolic enzymes. Cell Biol. Int, 2010; 34(11): 1085-1089.
https://doi.org/10.1042/CBI20100451
PMid:20653567

3. Chen O.I., Lyniv L.S., Igumentseva N.I. et al. Effect of nitric oxide donor on viability of human leukemic cells upon arginine deprivation. Studia Biologica, 2011; 5(2): 17-28.
https://doi.org/10.30970/sbi.0502.155

4. Cheng N.M., Leung Y.C., Lo W.H.: US Patent No. 20050244398. 2005.

5. Cheng P.N., Lam T.L., Lam W.M. et al. Pegylated recombinant human arginase (rhArg-peg5000mw) inhibits the in vitro and in vivo proliferation of human hepatocellular carcinoma through arginine depletion. Cancer Res, 2007; 67: 309-317.
https://doi.org/10.1158/0008-5472.CAN-06-1945
PMid:17210712

6. Delage B., Fennell D.A., Nicholson L. et al. Arginine deprivation and argininosuccinate synthetase expression in the treatment of cancer. Int. J. Cancer, 2010; 126: 2762-2772.
https://doi.org/10.1002/ijc.25202
PMid:20104527

7. Dillon B.J., Prieto V.G., Curley S.A. et al. Incidence and distribution of argininosuccinate synthetase deficiency in human cancers: a method for identifying cancers sensitive to arginine deprivation. Cancer, 2004; 100: 826-833.
https://doi.org/10.1002/cncr.20057
PMid:14770441

8. Feun L., You M., Wu C.J. et al. Arginine Deprivation as a Targeted Therapy for Cancer. Curr Pharm. Des, 2008; 14(11): 1049-1057.
https://doi.org/10.2174/138161208784246199
PMid:18473854 PMCid:PMC3096551

9. Flam B.R., Eichler D.C., Solomonson L.P. Endothelial nitric oxide production is tightly coupled to the citrulline-NO cycle. Nitric Oxide, 2007; 17: 115-121.
https://doi.org/10.1016/j.niox.2007.07.001
PMid:17869551

10. Guerreiro J.R., Lameu C., Oliveira E.F. et al. Argininosuccinate Synthetase Is a Functional Target for a Snake Venom Anti-hypertensive Peptide. Role in arginine and nitric oxide production. J. Biol. Chem, 2009; 284(30): 20022-20033.
https://doi.org/10.1074/jbc.M109.021089
PMid:19491403 PMCid:PMC2740428

11. Haberle J., Pauli S., Linnebank M. et al. Structure of the human argininosuccinate synthetase gene and an improved system for molecular diagnostics in patients with classical and mild citrullinemia. Hum. Genet, 2002; 110: 327-333.
https://doi.org/10.1007/s00439-002-0686-6
PMid:11941481

12. Haines R.J., Pendleton L.C., Eichler D.C. Argininosuccinate synthase: at the center of arginine metabolism. Int. J. Biochem. Mol. Biol, 2011; 2(1): 8-23.

13. Hao G., Xie L., Gross S.S. Argininosuccinate Synthetase is Reversibly Inactivated by S-Nitrosylation in Vitro and in Vivo. J. Biol. Chem, 2004; 279(35): 36192-36200.
https://doi.org/10.1074/jbc.M404866200
PMid:15192091

14. Husson A., Brasse-Lagnel C., Fairand A. et al. Argininosuccinate synthetase from the urea cycle to the citrulline-NO cycle. Eur. J. Biochem, 2003; 270: 1887-1899.
https://doi.org/10.1046/j.1432-1033.2003.03559.x
PMid:12709047

15. Laemmli U.K. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature, 1970; 227(259): 680-685.
https://doi.org/10.1038/227680a0
PMid:5432063

16. Peterson G.L. A simplification of the protein assay method of Lowry et al. which is more generally applicable. Anal. Biochem, 1977; 83: 346-356.
https://doi.org/10.1016/0003-2697(77)90043-4

17. Satoh M., Iwahori T., Sugawara N., Yamazaki M. Liver argininosuccinate synthase binds to bacterial lipopolysaccharides and lipid A and inactivates their biological activities. J. Endotoxin Res, 2006; 12(1): 21-38.
https://doi.org/10.1177/09680519060120010301

18. Shen L.-J., Beloussow K., Shen W.-C. Accessibility of endothelial and inducible nitric oxide synthase to the intracellular citrulline-arginine regeneration pathway. Biochem. Pharmacology, 2005; 69: 97-104.
https://doi.org/10.1016/j.bcp.2004.09.003
PMid:15588718

19. Towbin H., Staehelin T., Gordon J. Electrophoretic transfer of proteins from polyacrylamide gels to nitrocellulose sheets: procedure and some applications. Biotechnology, 1992; 24: 145-149.

20. Wang P.G., Xian M., Tang X. et al. Nitric oxide donors: chemical activities and biological applications. Chem. Rev, 2002; 102(4): 1091-1134.
https://doi.org/10.1021/cr000040l
PMid:11942788

21. Wheatley D.N. Controlling cancer by restricting arginine availability - arginine - catabolizing enzymes as anticancer agents. Anticancer Drugs, 2004; 15: 825-833.
https://doi.org/10.1097/00001813-200410000-00002

22. Xie L., Gross S. S. Argininosuccinate Synthetase Overexpression in Vascular Smooth Muscle Cells Potentiates Immunostimulant-induced NO Production. J. Biol. Chem, 1997; 272(26): 16624-16630.
https://doi.org/10.1074/jbc.272.26.16624
PMid:9195976


Refbacks

  • There are currently no refbacks.


Copyright (c) 2011 Studia biologica

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.