SPECIES AND STRUCTURAL DIVERSITY OF FLORA AND AVIFAUNA ON THE TERRITORY OF URBAN WATER TREATMENT FACILITIES
DOI: http://dx.doi.org/10.30970/sbi.1703.731
Abstract
Background. The territories of urban wastewater treatment facilities, where the natural vegetation has been radically changed to synanthropic vegetation, promote the spread of ruderal plant species, including invasive ones, but at the same time create a favourable environment for nesting and staying of many bird species, including rare and those listed in the Red Data Book of Ukraine. The aim of this study is to investigate the species and structural diversity of vegetation on the territory of urban wastewater treatment facilities in order to determine their significance for the conservation of avifauna.
Materials and Methods. To analyse the state of biodiversity, an inventory of species of higher plant and avifauna in the technogenic areas of Kharkiv wastewater treatment facilities in the spring and summer of 2020–2021 was carried out using conventional methods.
Results. The flora of higher vascular plants includes 90 species belonging to 78 genera, 30 families, and 2 classes of the Magnoliophyta division. The leading families are: Asteraceae (30.0 %; n = 90), Poaceae (12.2 %), Brassicaceae (6.7 %), Fabaceae and Polygonaceae (4.4 % each). Herbaceous plant species (92.0 %; n = 90) dominated according to the С. Raunkiær classification (1934), with a predominance of hemicryptophytes (54.0 %) and terophytes (37.0 %). The increased proportion of the latter, compared to the zonal flora, indicates a significant disturbance of the habitat by anthropogenic factors. This is also evidenced by the predominance of synanthropic plant species (81.1 %; n = 90), including 40 species (54.8 %; n = 73) belonging to the apophyte group, and the remaining 45.2 % are adventitious species. In relation to moisture, most plants are mesophytes (71.0%; n = 90). In terms of geographical structure, the flora has a Holarctic-European-Eurasian character with admixtures of North American, Mediterranean, Nomadic and Mediterranean-Asian geoelements.
The avifauna includes 95 species belonging to 13 orders and 29 families. Birds of Passeriformes (32.6 %), Charadriiformes (24.2 %) and Anseriformes (13.7 %) predominate. The treatment facilities are important for nesting of 53 species (55.8 %; n = 95), and are also a trophic base for 23 (24.2 %) of wandering and 19 (20.0 %) of transient bird species. The nine faunal groups were dominated by boreal 26.6 % (n = 95) and tropical 13.8 %, as well as limnophilous (12.8 %) and nemoral (11.7 %) species. The nesting avifauna was formed mainly by nemoral 17.0 % (n = 53) and tropical 15.1 %, as well as alluviophilous and boreal (13.2 % each) species.
The greatest bird diversity is found in the overgrown silt areas, where vegetation with a projected cover of 50–70 % is interspersed with shallow water as close as possible to natural areas.
Among the identified bird species, the following breeding birds are listed in the Red Data Book of Ukraine: Himantopus himantopus, also transient and wandering species: Milvus migrans, Hieraaetus pennatus, Columba oenas.
Conclusion. The established plant communities with rich avifauna, including rare bird species, and the location of the treatment facilities within their migration routes, indicate the importance of these areas for the conservation of biota.
Keywords
Full Text:
PDFReferences
Alexander, K. L., Sebastián-González, E., Botella, F., & Sánchez-Zapata, J. A. (2011). Occupancy patterns of irrigation ponds by black-winged stilts Himantopus himantopus. Ardeola, 58(1), 175-182. doi:10.13157/arla.58.1.2011.175 Crossref ● Google Scholar | ||||
| ||||
Amanah, F & Yunanto, T. (2019). Mine reclamation period to successfully meet criteria in Indonesia. In A. B. Fourie & M. Tibbett (Eds.), Mine Closure 2019: Proceedings of the 13th International Conference on Mine Closure (pp. 1303-1314). Perth: Australian Centre for Geomechanics. doi:10.36487/acg_rep/1915_103_amanah Crossref ● Google Scholar | ||||
| ||||
Andersen, D. C., Sartoris, J. J., Thullen, J. S., & Reusch, P. G. (2003). The effects of bird use on nutrient removal in a constructed wastewater-treatment wetland. Wetlands, 23(2), 423-435. doi:10.1672/17-20 Crossref ● Google Scholar | ||||
| ||||
Ashoori, A. (2011). Breeding ecology of the black-winged stilt Himantopus himantopus in Boujagh National Park, Gilan Province, northern Iran. Podoces, 6(1), 87-91. Google Scholar | ||||
| ||||
Bell, G., Sena, K., Barton, C., & French, M. (2017). Establishing pine monocultures and mixed pine-hardwood stands on reclaimed surface mined land in eastern Kentucky: implications for forest resilience in a changing climate. Forests, 8(10), 375. doi:10.3390/f8100375 Crossref ● Google Scholar | ||||
| ||||
Bibby, C. J., Burgess, N. D., Hill, D. A., & Mustoe, S. (2000). Bird census techniques, 2nd edn. London: Academic Press. Google Scholar | ||||
| ||||
Blinkova, O., & Shupova, T. (2017). Bird communities and vegetation composition in the urban forest ecosystem: correlations and comparisons of diversity indices. Ekológia (Bratislava), 36(4), 366-387. doi:10.1515/eko-2017-0029 Crossref ● Google Scholar | ||||
| ||||
Blinkova, O., & Shupova, T. (2018). Bird communities and vegetation composition in natural and semi-natural forests of megalopolis: correlations and comparisons of diversity indices (Kyiv city, Ukraine). Ekológia (Bratislava), 37(3), 259-288. doi:10.2478/eko-2018-0021 Crossref ● Google Scholar | ||||
| ||||
Borthwick, R. R., & Wang, Y. (2015). Bird species' responses to post mine reclamation in Alabama - a preliminary analysis. Journal American Society of Mining and Reclamation, 4(2), 1-19. doi:10.21000/jasmr15020001 Crossref ● Google Scholar | ||||
| ||||
Braun-Blanquet, J. (1932). Plant sociology. The study of plant communities. (Transl. by G. D. Fuller & H. S. Conard). New York, XVIII: 439 p. Reprint 1966. Google Scholar | ||||
| ||||
Browse the World Flora Online (WFO) Plant List [online]. Retrieved from https://wfoplantlist.org/plant-list | ||||
| ||||
Bulakhov, V. L., Gubkin, A. A., Ponomarenko, O. L., & Pakhomov, O. Y. (2008). Biologichne riznomanittya Ukrainy. Dnipropetrovska Oblast'. Ptahy: Negorobcepodibni (Aves: Non-Passeriformes) [Biological diversity of Ukraine. Dnipropetrovsk Region. Aves: Non-Passeriformes]. Dnipropetrovsk: Dnipropetrovsk University Press. (In Ukrainian) Google Scholar | ||||
| ||||
Bulakhov, V. L., Gubkin, A. A., Ponomarenko, O. L., & Pakhomov, O. Y. (2015). Biologichne riznomanittya Ukrainy. Dnipropetrovska Oblast'. Ptahy: Gorobcepodibni (Aves: Passeriformes) [Biological Diversity of Ukraine. Dnipropetrovsk Region. Aves: Passeriformes]. Dnipropetrovsk: Dnipropetrovsk University Press. (In Ukrainian) Google Scholar | ||||
| ||||
Caplat, P., & Fonderflick, J. (2009). Area mediated shifts in bird community composition: a study on a fragmented Mediterranean grassland. Biodiversity and Conservation, 18(11), 2979-2995. doi:10.1007/s10531-009-9620-8 Crossref ● Google Scholar | ||||
| ||||
Chaplygina, A., & Pakhomov, O. (2020). Trophic links of the blackbird (Turdus merula Linnaeus, 1758) in transformed forest ecosystems of north-eastern Ukraine. Ekológia (Bratislava), 39(4), 333-342. doi:10.2478/eko-2020-0027 Crossref ● Google Scholar | ||||
| ||||
Chaplygina, А. B., Filatova О. V., Litvin L. М., Nykyforov V. V. (2023). The main factors and prospects for the restoration of biodiversity in technogenic territories (on the example of the Poltava Mining and Processing Plant). Biosystems Diversity, 31(1), 100-112. doi:10.15421/012311 Crossref ● Google Scholar | ||||
| ||||
Čížková, H., Květ, J., Comín, F. A., Laiho, R., Pokorný, J., & Pithart, D. (2013). Actual state of European wetlands and their possible future in the context of global climate change. Aquatic Sciences, 75(1), 3-26. doi:10.1007/s00027-011-0233-4 Crossref ● Google Scholar | ||||
| ||||
Fedun, O. М. Usov, O. Y., & Gavris, G. G. (2015). Breeding Avifauna of the waste water treatment plants, located in northern Left-Bank Part of Ukraine. Vestnik Zoologii, 49(2), 125-134. doi:10.1515/vzoo-2015-0014 Crossref ● Google Scholar | ||||
| ||||
Fesenko, H. V. (2018). Vitchyzniana nomenklatura ptakhiv svitu [Homeland nomenclature of birds of the world]. Kryvyi Rih: Dionat. (In Ukrainian) Google Scholar | ||||
| ||||
Fesenko, H. V., & Bokotey, А. А. (2002). Ptakhy fauny Ukrainy [Birds of the fauna of Ukraine]. Kyiv: New Print. (In Ukrainian) Google Scholar | ||||
| ||||
Keten, A., Sarcan, E., & Anderson, J. T. (2020). Temporal patterns of wetland-associated bird assemblages in altered wetlands in Turkey. Polish Journal of Ecology, 67(4), 316-330. doi:10.3161/15052249pje2019.67.4.004 Crossref ● Google Scholar | ||||
| ||||
Kornas, J. (1968) A geographical-historical classification of synanthropic plants. Materiały Zakładu Fitosocjologii Stosowanej Uniwersytetu Warszawskiego, 25, 33-41. Google Scholar | ||||
| ||||
Koshelev, A. I., Pakhomov, O. Y., Kunakh, O. M., Koshelev, V. A., & Fedushko, M. P. (2020). Temporal dynamic of the phylogenetic diversity of the bird community of agricultural lands in Ukrainian steppe drylands. Biosystems Diversity, 28(1), 34-40. doi:10.15421/012006 Crossref ● Google Scholar | ||||
| ||||
Kyselenko, V. (2021). Istoriia Bezliudivky [The story of Bezlyudivka] V. 1. Zhytomyr: Evenok. Retrieved from https://shron1.chtyvo.org.ua/Kysylenko_Vasyl/Istoriia_Bezliudivky_Tom_1.pdf?PHPSESSID=1u15fitpsrvdjc26oul5i3s7d5 | ||||
| ||||
Leppäkoski, E., Gollasch, S., & Olenin, S. (2002). Alien species in European waters. In E. Leppäkoski, S. Gollasch, S. Olenin (Eds.), Invasive aquatic species of Europe. Distribution, impacts and management (pp. 1-6). Dordrecht: Springer. doi:10.1007/978-94-015-9956-6_1 Crossref ● Google Scholar | ||||
| ||||
Magurran, A. E. (2004). Measuring biological diversity. Blackwell Publishing: Oxford, UK. Google Scholar | ||||
| ||||
Mamedova, Y. P., & Chaplygina, A. B. (2021). Breeding of black-winged stilt Himantopus himantopus in muddy sites of a wastewater treatment plant. Biosystems Diversity, 29(3), 286-293. doi:10.15421/012136 Crossref ● Google Scholar | ||||
| ||||
Møller, A. P., Diaz, M., Flensted-Jensen, E., Grim, T., Ibáñez-Álamo, J. D., Jokimäki, J., Mänd, R., Markó, G., & Tryjanowski, P. (2012). High urban population density of birds reflects their timing of urbanization. Oecologia, 170(3), 867-875. doi:10.1007/s00442-012-2355-3 Crossref ● PubMed ● Google Scholar | ||||
| ||||
Murray, C. G., & Hamilton, A. J. (2010). Review: perspectives on wastewater treatment wetlands and waterbird conservation. Journal of Applied Ecology, 47(5), 976-985. doi:10.1111/j.1365-2664.2010.01853.x Crossref ● Google Scholar | ||||
| ||||
Perennou, C., Gaget, E., Galewski, T., Geijzendorffer, I., & Guelmami, A. (2020). Evolution of wetlands in Mediterranean region. Water Resources in the Mediterranean Region, 297-320. doi:10.1016/b978-0-12-818086-0.00011-x Crossref ● Google Scholar | ||||
| ||||
Pesotskaya, V. V., Chaplygina, A. B., Shupova, T. V., & Kratenko, R. I. (2020). Fruit and berry plants of forest belts as a factor of species diversity of ornithofauna during the breeding season and autumn migration period. Biosystems Diversity, 28(3), 290-297. doi:10.15421/012038 Crossref ● Google Scholar | ||||
| ||||
Potish, L. (2009). Ptakhy Zakarpatskoi oblasti (anotovanyi spysok) [Birds of the Transcarpathian region of Ukraine (annotated list)]. Lviv. (In Ukrainian) Google Scholar | ||||
| ||||
Raunkiær, C. (1934) The life forms of plants and statistical plant geography. Oxford University Press, London. Google Scholar | ||||
| ||||
Reid, A. J., Carlson, A. K., Creed, I. F., Eliason, E. J., Gell, P. A., Johnson, P. T. J., Kidd, K. A., MacCormack, T. J., Olden, J. D., Ormerod, S. J., Smol, J. P., Taylor, W. W., Tockner, K., Vermaire, J. C., Dudgeon, D., & Cooke, S. J. (2019). Emerging threats and persistent conservation challenges for freshwater biodiversity. Biological Reviews of the Cambridge Philosophical Society, 94(3), 849-873. doi:10.1111/brv.12480 Crossref ● PubMed ● Google Scholar | ||||
| ||||
Robledano, F., Esteve, M. A., Farinós, P., Carreño, M. F., & Martínez-Fernández, J. (2010). Terrestrial birds as indicators of agricultural-induced changes and associated loss in conservation value of Mediterranean wetlands. Ecological Indicators, 10(2), 274-286. doi:10.1016/j.ecolind.2009.05.006 Crossref ● Google Scholar | ||||
| ||||
Seath, J., & Shackleton, C. (2022). Comparative avifaunal richness and diversity in invasive Acacia dealbata patches and adjacent montane grasslands. African Zoology, 57(1), 12-19. doi:10.1080/15627020.2022.2047104 Crossref ● Google Scholar | ||||
| ||||
Sebastián-González, E., & Green, A. J. (2016). Reduction of avian diversity in created versus natural and restored wetlands. Ecography, 39(12), 1176-1184. doi:10.1111/ecog.01736 Crossref ● Google Scholar | ||||
| ||||
Sirami, C., Brotons, L., Burfield, I., Fonderflick, J., & Martin, J.-L. (2008). Is land abandonment having an impact on biodiversity? A meta-analytical approach to bird distribution changes in the north-western Mediterranean. Biological Conservation, 141(2), 450-459. doi:10.1016/j.biocon.2007.10.015 Crossref ● Google Scholar | ||||
| ||||
Slankard, K. G., Baxley, D. L., & Sprandel, G. L. (2018). The impacts of native-grassland restoration on raptors and their prey on a reclaimed surface mine in Kentucky. Northeastern Naturalist, 25(2), 277-290. doi:10.1656/045.025.0211 Crossref ● Google Scholar | ||||
| ||||
Thullen, J. S., Sartoris, J. J., & Walton, W. E. (2002). Effects of vegetation management in constructed wetland treatment cells on water quality and mosquito production. Ecological Engineering, 18(4), 441-457. doi:10.1016/s0925-8574(01)00105-7 Crossref ● Google Scholar | ||||
| ||||
Thullen, J. S., Sartoris, J. J., & Nelson, S. M. (2005). Managing vegetation in surface-flow wastewater-treatment wetlands for optimal treatment performance. Ecological Engineering, 25(5), 583-593. doi:10.1016/j.ecoleng.2005.07.013 Crossref ● Google Scholar | ||||
| ||||
Yarys, O., Chaplygina, A., & Kratenko, R. (2021). Breeding phenology of common redstart (Phoenicurus phoenicurus) and its reproduction biology with artificial nests in northeastern Ukraine. Ornis Hungarica, 29(2), 122-138. doi:10.2478/orhu-2021-0024 Crossref ● Google Scholar | ||||
| ||||
Yuzyk, D., & Chaplyhina, A. (2021). Great tits', Parus major (Passeriformes, Turdidae), diet in transformed forest ecosystems of northeastern Ukraine. Ekológia (Bratislava), 40(4), 392-400. doi:10.2478/eko-2021-0041 Crossref ● Google Scholar |
Refbacks
- There are currently no refbacks.
Copyright (c) 2023 Yulia Mamedova, Ruslana Volkova, Angela Chaplygina
This work is licensed under a Creative Commons Attribution 4.0 International License.