APOPTOTIC MODIFICATION OF GLYCOSPHINGOLIPIDS OF HUMAN GRANULOCYTES

A. M. Tomin, R. O. Bilyy, Yu. Ya. Kit, I. J. Kril, T. D. Butters, R. S. Stoika


DOI: http://dx.doi.org/10.30970/sbi.0602.220

Abstract


The phenomenon of programmed apoptotic desialylation of cell glycans was described previously. However, the possibility of this process application to the sialylated glycolipids of membranes stayes unknown. Granulocytes of human peripherical blood were utilized as a model for studying glycosphingolipid spectra changes. Ganglioside fractions were extracted from the granulocytes and purified by two-stage column chromatography – DEAE-Fractogel and Sephadex LH-20 sorbents, with subsequent analysis by thin-layer and high-performance liquid chromatography. An increased level of GM2, GM1 ganglioside and Gb3 globoside in apoptotic cells, as well as a decrease of GM3, GT3 and Gb4 amount were detected. These results draw to a conclusion that gangliosides, as well as N-glycans, might be a target of apoptotic desialylation. Accor­ding to available recent data, changes in gangliosides can serve as important pathoge­nesis factors in the autoimmune disorders.


Keywords


gangliosides, apoptosis, desialylation, sialidases

References


1. Lopez P.H., Schnaar R.L. Gangliosides in cell recognition and membrane protein regulation. Curr. Opin. Struct. Biol, 2009; 19(5): 549-57.
https://doi.org/10.1016/j.sbi.2009.06.001
PMid:19608407 PMCid:PMC2763983

2. Nicoll G., Avril T., Lock K. et al. Ganglioside GD3 expression on target cells can modulate NK cell cytotoxicity via siglec-7-dependent and -independent mechanisms. Eur. J. Immunol, 2003; 33(6): 1642-8.
https://doi.org/10.1002/eji.200323693
PMid:12778482

3. Yoon S.J., Nakayama K., Hikita T. et al. Epidermal growth factor receptor tyrosine kinase is modulated by GM3 interaction with N-linked GlcNAc termini of the receptor. Proc. Natl. Acad. Sci. USA, 2006; 103(50): 18987-91.
https://doi.org/10.1073/pnas.0609281103
PMid:17142315 PMCid:PMC1748164

4. Nojiri H., Stroud M., Hakomori S. A specific type of ganglioside as a modulator of insulin-dependent cell growth and insulin receptor tyrosine kinase activity. Possible association of ganglioside-induced inhibition of insulin receptor function and monocytic differentiation induction in HL-60 cells. J. Biol. Chem, 1991; 266(7): 4531-7.

5. Kolter T., Proia R.L., Sandhoff K. Combinatorial ganglioside biosynthesis. J. Biol. Chem, 2002; 277(29): 25859-62.
https://doi.org/10.1074/jbc.R200001200
PMid:12011101

6. Bilyy R.O., Shkandina T., Tomin A. et al. Macrophages discriminate glycosylation patterns of apoptotic cell-derived microparticles. J. Biol. Chem, 2012; 287(1): 496-503.
https://doi.org/10.1074/jbc.M111.273144
PMid:22074924 PMCid:PMC3249103

7. Traving C., Schauer R. Structure, function and metabolism of sialic acids. Cell Mol. Life Sci, 1998; 54(12): 1330-49.
https://doi.org/10.1007/s000180050258
PMid:9893709

8. Schauer R. Sialic acids as regulators of molecular and cellular interactions. Curr. Opin. Struct. Biol, 2009; 19(5): 507-14.
https://doi.org/10.1016/j.sbi.2009.06.003
PMid:19699080

9. Ledeen R.W., Wu G., Andre S. et al. Beyond glycoproteins as galectin counterreceptors: effector T cell growth control of tumors via ganglioside GM1. Ann. NY Acad. Sci, 2012; 1253: 206-21.
https://doi.org/10.1111/j.1749-6632.2012.06479.x
PMid:22524425

10. Uncini A. A common mechanism and a new categorization for anti-ganglioside antibody-mediated neuropathies. Exp. Neurol, 2012; 235(2): 513-6.
https://doi.org/10.1016/j.expneurol.2012.03.023
PMid:22507308

11. Labrador-Horrillo M., Martinez-Valle F., Gallardo E. et al. Anti-ganglioside antibodies in patients with systemic lupus erythematosus and neurological manifestations. Lupus, 2012; 21(6): 611-5.
https://doi.org/10.1177/0961203312436856
PMid:22323340

12. Bilyy R., Tomin A., Mahorivska I. et al. Antibody-mediated sialidase activity in blood serum of patients with multiple myeloma. J. Mol. Recognit, 2011; 24(4): 576-84.
https://doi.org/10.1002/jmr.1071
PMid:21472809

13. Bilyy R., Tomin A., Tolstyak Ya. et al. Cell Surface Glycans at SLE - Changes During Cells Death, Utilization for Disease Detection and Molecular Mechanism Underlying Their Modification. Autoimmune Disorders - Pathogenetic Aspects, 2011: 89-110.
http://www.intechopen.com/books/autoimmune-disorders-pathogenetic-aspects/cell-surface-glycans-at-sle-changes-during-cells-death-utilization-for-disease-detection-and-molecul

14. Haslett C., Guthrie L.A., Kopaniak M.M. et al. Modulation of multiple neutrophil functions by preparative methods or trace concentrations of bacterial lipopolysaccharide. Am. J. Pathol, 1985; 119(1): 101-10.

15. Newman S.L., Henson J.E., Henson P.M. Phagocytosis of senescent neutrophils by human monocyte-derived macrophages and rabbit inflammatory macrophages. J. Exp. Med, 1982; 156(2): 430-42.
https://doi.org/10.1084/jem.156.2.430
PMid:7097159

16. Suzuki K., Poduslo S.E., Norton W.T. Gangliosides in the myelin fraction of developing rats. Biochim. Biophys. Acta, 1967; 144(2): 375-81.
https://doi.org/10.1016/0005-2760(67)90166-X

17. Yu R.K., Ariga T. Ganglioside analysis by high-performance thin-layer chromatography. Methods Enzymol, 2000; 312: 115-34.
https://doi.org/10.1016/S0076-6879(00)12903-9

18. Svennerholm L. Chromatographic Separation of Human Brain Gangliosides. J. Neurochem, 1963; 10: 613-23.
https://doi.org/10.1111/j.1471-4159.1963.tb08933.x
PMid:14066623

19. Hayakawa T., Hirai M. An assay of ganglioside using fluorescence image analysis on a thin-layer chromatography plate. Anal. Chem, 2003; 75(23): 6728-31.
https://doi.org/10.1021/ac0346095
PMid:14640752

20. Svennerholm L. The Gangliosides. J. Lipid Res, 1964; 5: 145-55.

21. Fredman P., Nilsson O., Tayot J.L., Svennerholm L. Separation of gangliosides on a new type of anion-exchange resin. Biochim. Biophys. Acta, 1980; 618(1): 42-52.
https://doi.org/10.1016/0005-2760(80)90052-1

22. Norris-Cervetto E., Callaghan R., Platt F.M., Dwek R.A., Butters T.D. Inhibition of glucosylceramide synthase does not reverse drug resistance in cancer cells. J. Biol. Chem, 2004; 279(39): 40412-8.
https://doi.org/10.1074/jbc.M404466200
PMid:15263008

23. Bigge J.C., Patel T.P., Bruce J.A. et al. Nonselective and efficient fluorescent labeling of glycans using 2-amino benzamide and anthranilic acid. Anal. Biochem, 1995; 230(2): 229-38.
https://doi.org/10.1006/abio.1995.1468
PMid:7503412

24. Monti E., Bassi M.T., Papini N. et al. Identification and expression of NEU3, a novel human sialidase associated to the plasma membrane. Biochem. J, 2000; 349(Pt 1): 343-51.
https://doi.org/10.1042/bj3490343
PMid:10861246 PMCid:PMC1221155

25. Ullmannova V., Haskovec C. The use of housekeeping genes (HKG) as an internal control for the detection of gene expression by quantitative real-time RT-PCR. Folia Biol. (Praha), 2003; 49(6): 211-6.

26. Papini N., Anastasia L., Tringali C. et al. The plasma membrane-associated sialidase MmNEU3 modifies the ganglioside pattern of adjacent cells supporting its involvement in cell-to-cell interactions. J. Biol. Chem, 2004; 279(17): 16989-95.
https://doi.org/10.1074/jbc.M400881200
PMid:14970224


Refbacks

  • There are currently no refbacks.


Copyright (c) 2012 Studia biologica

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.