THAPSIGARGIN-RESISTANT THIACALIX[4]ARENE C-1087-SENSITIVE COMPONENT OF THE CONTRACTILE ACTIVITY IN RAT MYOMETRIUM REFLECTS THE FUNCTIONING OF PLASMA MEMBRANE CALCIUM PUMP
DOI: http://dx.doi.org/10.30970/sbi.1703.725
Abstract
Background. According to existing knowledge, thiacalix[4]arene С-1087 is highly capable of inhibiting Са2+-pump (Са2+, Mg2+-АТРase) of the plasma membrane; at the same time it inhibits the functioning of Са2+-pump of the sarcoplasmic reticulum of uterine smooth muscles to some degree. The aim of this research was to study the effects of С-1087 on the concentration of Ca2+ ions and contractile activity of the rat myometrium cells using an inhibitor of Са2+-pump of the sarcoplasmic reticulum – thapsigargin.
Materials and Methods. The experiments were conducted using outbred white non-pregnant rats. The contractile activity in the preparations of longitudinal SM of uterine horns with preserved endothelium was registered in the isometric mode. To determine the changes in [Ca2+]i level, myocytes were treated with probes Hoechst 33342 (to test the nucleus of the cell) and fluo-4 AM (to test the change in Са2+-concentration in the cell).
Results. The tenzometric studies with the subsequent mechanokinetic analysis demonstrated that under the action of thapsigargin (0.5 µM), thiacalix[4]arene C-1087 (10 µM) caused considerable changes in the kinetics of the spontaneous contractile activity processes in the myometrium of rats, including the decrease in the maximal contraction velocity and the increase in the maximal relaxation velocity. By means of confocal microscopy with Ca2+-sensitive fluorescent probe fluo-4, it was demonstrated that the application of thiacalix[4]arene С-1087 to immobilized myocytes of the uterus against the background of thapsigargin caused a transient spike of Са2+-signal with the subsequent turn of the intracellular concentration of Ca ions to the stable increased level. The effects of С-1087 under the action of thapsigargin regarding the relaxation phase in the spontaneous myometrium contractions were removed after the preliminary blocking of nitric oxide synthases L-NAME (100 µM). Under the action of L-NAME, thiacalix[4]arene С-1087 (10 µM) caused complete inhibition of the relaxation process in the contraction of myometrium preparations, induced by high-potassium solution (80 mM).
Conclusions. The primary reason for changes in the contractile activity and Ca2+-signal in uterine myocytes under the effect of thiacalix[4]arene С-1087 is its ability to inhibit Са2+-pump of the plasma membrane; further С-1087-induced changes in the smooth muscle tissues may be caused by the increased level of Са2+ concentration in myocytes. The obtained results demonstrate thiacalix[4]arene С-1087 is a promising compound for the elaboration of pharmacological preparations for modulating the contractile activity in smooth muscles, including myometrium.
Keywords
Full Text:
PDFReferences
Boutin, J. A., Bedut, S., Jullian, M., Galibert, M., Frankiewicz, L., Gloanec, P., Ferry, G., Puget, K., & Leprince, J. (2022). Caloxin-derived peptides for the inhibition of plasma membrane calcium ATPases. Peptides, 154, 170813. doi:10.1016/j.peptides.2022.170813 Crossref ● PubMed ● Google Scholar | ||||
| ||||
Brainard, A. M., Korovkina, V. P., & England, S. K. (2007). Potassium channels and uterine function. Seminars in Cell & Developmental Biology, 18(3), 332-339. doi:10.1016/j.semcdb.2007.05.008 Crossref ● PubMed ● PMC ● Google Scholar | ||||
| ||||
Brown, A., Cornwell, T., Korniyenko, I., Solodushko, V., Bond, C. T., Adelman, J. P., & Taylor, M. S. (2007). Myometrial expression of small conductance Ca2+-activated K+ channels depresses phasic uterine contraction. American Journal of Physiology. Cell Physiology, 292(2), C832-C840. doi:10.1152/ajpcell.00268.2006 Crossref ● PubMed ● Google Scholar | ||||
| ||||
Bru-Mercier, G., Gullam, J. E., Thornton, S., Blanks, A. M., & Shmygol, A. (2012). Characterization of the tissue-level Ca2+ signals in spontaneously contracting human myometrium. Journal of Cellular and Molecular Medicine, 16(12), 2990-3000. doi:10.1111/j.1582-4934.2012.01626.x Crossref ● PubMed ● PMC ● Google Scholar | ||||
| ||||
Chatterjee, S., Gangula, P. R. R., Dong, Y. L., & Yallampalli, C. (1996). Immunocytochemical localization of nitric oxide synthase-III in reproductive organs of female rats during the oestrous cycle. The Histochemical Journal, 28(10), 715-723. doi:10.1007/bf02409009 Crossref ● PubMed ● Google Scholar | ||||
| ||||
Christensen, S. B., Simonsen, H. T., Engedal, N., Nissen, P., Møller, J. V., Denmeade, S. R., & Isaacs, J. T. (2021). From plant to patient: thapsigargin, a tool for understanding natural product chemistry, total syntheses, biosynthesis, taxonomy, ATPases, cell death, and drug development. Progress in the Chemistry of Organic Natural Products, 115, 59-114. doi:10.1007/978-3-030-64853-4_2 Crossref ● PubMed ● Google Scholar | ||||
| ||||
Corradi, G. R., Mazzitelli, L. R., Petrovich, G. D., de Tezanos Pinto, F., Rochi, L., & Adamo, H. P. (2021). Plasma membrane Ca2+ pump PMCA4z is more active than splicing variant PMCA4x. Frontiers in Cellular Neuroscience, 15, 668371. doi:10.3389/fncel.2021.668371 Crossref ● PubMed ● PMC ● Google Scholar | ||||
| ||||
Darios, E. S., Seitz, B., & Watts, S. W. (2012). Smooth muscle pharmacology in the isolated virgin and pregnant rat uterus and cervix. Journal of Pharmacology and Experimental Therapeutics, 341(3), 587-596. doi:10.1124/jpet.111.191031 Crossref ● PubMed ● Google Scholar | ||||
| ||||
Dong, Y.-L., Gangula, P. R. R., & Yallampalli, C. (1996). Nitric oxide synthase isoforms in the rat uterus: differential regulation during pregnancy and labour. Journal of Reproduction and Fertility, 107(2), 249-254. doi:10.1530/jrf.0.1070249 Crossref ● PubMed ● Google Scholar | ||||
| ||||
Floyd, R., & Wray, S. (2007). Calcium transporters and signalling in smooth muscles. Cell Calcium, 42(4-5), 467-476. doi:10.1016/j.ceca.2007.05.011 Crossref ● PubMed ● Google Scholar | ||||
| ||||
Gravina, F., Parkington, H., Kerr, K., De Oliveira, R., Jobling, P., Coleman, H., Sandow, S., Davies, M., Imtiaz, M., & Van Helden, D. (2010). Role of mitochondria in contraction and pacemaking in the mouse uterus. British Journal of Pharmacology, 161(6), 1375-1390. doi:10.1111/j.1476-5381.2010.00949.x Crossref ● PubMed ● PMC ● Google Scholar | ||||
| ||||
Heo, R., Kang, M., Mun, S. Y., Park, M., Han, E. T., Han, J. H., Chun, W., Park, H., Jung, W. K., Choi, I. W., & Park, W. S. (2023). Antidiabetic omarigliptin dilates rabbit aorta by activating voltage-dependent K+ channels and the sarco/endoplasmic reticulum Ca2+-ATPase pump. Fundamental & Clinical Pharmacology, 37(1), 75-84. doi:10.1111/fcp.12831 Crossref ● PubMed ● Google Scholar | ||||
| ||||
Hutchings, G., Williams, O., Cretoiu, D., & Ciontea, S. M. (2009). Myometrial interstitial cells and the coordination of myometrial contractility. Journal of Cellular and Molecular Medicine, 13(10), 4268-4282. doi:10.1111/j.1582-4934.2009.00894.x Crossref ● PubMed ● PMC ● Google Scholar | ||||
| ||||
Jaskulska, A., Janecka, A. E., & Gach-Janczak, K. (2020). Thapsigargin - from traditional medicine to anticancer drug. International Journal of Molecular Sciences, 22(1), 4. doi:10.3390/ijms22010004 Crossref ● PubMed ● PMC ● Google Scholar | ||||
| ||||
Kosterin, S. O., Babich, L. G., Shlykov, S. G., Danylovych, Yu. V., Veklich, Т. О., & Mazur, Yu. Yu. (2016). Biokhimichni vlastyvosti ta rehuliatsiia Ca2+-transportuvalnykh system membrannykh struktur hladenkomiazovykh klityn [Biochemical properties and regulation of smooth muscle cell Са2+-transporting systems]. Kyiv: Naukova Dumka. (In Ukrainian) Google Scholar | ||||
| ||||
Kosterin, S. O., Kalchenko, V. I., Veclich, T. O., Babich, L. G., & Shlykov, S. G. (2019). Kaliksareny yak moduliatory ATP-hidrolaznykh system hladenkomiazovykh klityn [Calixarenes as modulators of ATP-hydrolyzing systems of smooth muscles]. Kyiv: Naukova Dumka. (In Ukrainian) Google Scholar | ||||
| ||||
Kosterin, S., Tsymbalyuk, O., & Holden O. (2021). Multiparameter analysis of mechanokinetics of the contractile response of smooth muscles. Series on Biomechanics, 35 (1),14-30. Google Scholar | ||||
| ||||
Krebs, J. (2022). Structure, function and regulation of the plasma membrane calcium pump in health and disease. International Journal of Molecular Sciences, 23(3), 1027. doi:10.3390/ijms23031027 Crossref ● PubMed ● PMC ● Google Scholar | ||||
| ||||
Matthew, A., Shmygol, A., & Wray, S. (2004). Ca2+ entry, efflux and release in smooth muscle. Biological Research, 37(4), 617-624. doi:10.4067/s0716-97602004000400017 Crossref ● PubMed ● Google Scholar | ||||
| ||||
Michelangeli, F., & East, J. M. (2011). A diversity of SERCA Ca2+ pump inhibitors. Biochemical Society Transactions, 39(3), 789-797. doi:10.1042/bst0390789 Crossref ● PubMed ● Google Scholar | ||||
| ||||
Mollard, P., Mironneau, J., Amedee, T., & Mironneau, C. (1986). Electrophysiological characterization of single pregnant rat myometrial cells in short-term primary culture. American Journal of Physiology-Cell Physiology, 250(1), C47-C54. doi:10.1152/ajpcell.1986.250.1.c47 Crossref ● PubMed ● Google Scholar | ||||
| ||||
Noble, D., Borysova, L., Wray, S., & Burdyga, T. (2014). Store-operated Ca2+ entry and depolarization explain the anomalous behaviour of myometrial SR: effects of SERCA inhibition on electrical activity, Ca2+ and force. Cell Calcium, 56(3), 188-194. doi:10.1016/j.ceca.2014.07.003 Crossref ● PubMed ● PMC ● Google Scholar | ||||
| ||||
Noble, K., Matthew, A., Burdyga, T., & Wray, S. (2009). A review of recent insights into the role of the sarcoplasmic reticulum and Ca entry in uterine smooth muscle. European Journal of Obstetrics, Gynecology, and Reproductive Biology, 144(1), S11-S19. doi:10.1016/j.ejogrb.2009.02.010 Crossref ● PubMed ● Google Scholar | ||||
| ||||
O'Day, D. H., & Huber, R. J. (2022). Calmodulin binding proteins and neuroinflammation in multiple neurodegenerative diseases. BMC Neuroscience, 23(1), 10. doi:10.1186/s12868-022-00695-y Crossref ● PubMed ● PMC ● Google Scholar https://doi.org/10.1186/s12868-022-00695-y PMid:35246032 PMCid:PMC8896083 | ||||
Pehlivanoğlu, B., Bayrak, S., & Doğan, M. (2013). A close look at the contraction and relaxation of the myometrium; the role of calcium. Journal of the Turkish German Gynecological Association, 14(4), 230-234. doi:10.5152/jtgga.2013.67763 Crossref ● PubMed ● PMC ● Google Scholar https://doi.org/10.5152/jtgga.2013.67763 PMid:24592112 PMCid:PMC3935537 | ||||
Rahbek, M., Nazemi, S., Ødum, L., Gupta, S., Poulsen, S. S., Hay-Schmidt, A., & Klaerke, D. A. (2014). Expression of the small conductance Ca2+-activated potassium channel subtype 3 (SK3) in rat uterus after stimulation with 17β-estradiol. PLoS One, 9(2), e87652. doi:10.1371/journal.pone.0087652 Crossref ● PubMed ● PMC ● Google Scholar https://doi.org/10.1371/journal.pone.0087652 PMid:24505302 PMCid:PMC3914860 | ||||
Shmigol, A. V., Eisner, D. A., & Wray, S. (1999). The role of the sarcoplasmic reticulum as a Ca2+ sink in rat uterine smooth muscle cells. The Journal of Physiology, 520(1), 153-163. doi:10.1111/j.1469-7793.1999.00153.x Crossref ● PubMed ● PMC ● Google Scholar https://doi.org/10.1111/j.1469-7793.1999.00153.x PMid:10517808 PMCid:PMC2269575 | ||||
Szewczyk, M. M., Pande, J., & Grover, A. K. (2008). Caloxins: a novel class of selective plasma membrane Ca2+ pump inhibitors obtained using biotechnology. Pflügers Archiv - European Journal of Physiology, 456(2), 255-266. doi:10.1007/s00424-007-0348-6 Crossref ● PubMed ● PMC ● Google Scholar https://doi.org/10.1007/s00424-007-0348-6 PMid:17909851 | ||||
Taggart, M. J., & Wray, S. (1998). Contribution of sarcoplasmic reticular calcium to smooth muscle contractile activation: gestational dependence in isolated rat uterus. The Journal of Physiology, 511(1), 133-144. doi:10.1111/j.1469-7793.1998.133bi.x Crossref ● PubMed ● PMC ● Google Scholar https://doi.org/10.1111/j.1469-7793.1998.133bi.x PMid:9679169 PMCid:PMC2231104 | ||||
Tommaso, S., Cavallotti, C., Malvasi, A., Vergara, D., Rizzello, A., Nuccio, F., & Tinelli, A. (2017). A qualitative and quantitative study of the innervation of the human non pregnant uterus. Current Protein & Peptide Science, 18(2), 140-148. doi:10.2174/1389203717666160330105341 Crossref ● PubMed ● PMC ● Google Scholar https://doi.org/10.2174/1389203717666160330105341 PMid:27063643 | ||||
Trujillo, M. M., Ausina, P., Savineau, J. P., Marthan, R., Strippoli, G., Advenier, C., Pinto, F. M., & Candenas, M. L. (2000). Cellular mechanisms involved in iso-osmotic high K+ solutions-induced contraction of the estrogen-primed rat myometrium. Life Sciences, 66(25), 2441-2453. doi:10.1016/s0024-3205(00)80004-1 Crossref ● PubMed ● PMC ● Google Scholar https://doi.org/10.1016/S0024-3205(00)80004-1 PMid:10894087 | ||||
Tsymbalyuk, O. V. (2021). Modulating the mechanokinetics of spontaneous contractions of the myometrium of rats using calix[4]arene C-90 - plasma membrane calcium ATPase inhibitor. Studia Biologica, 15(2), 3-14. doi:10.30970/sbi.1502.652 Crossref ● PubMed ● PMC ● Google Scholar https://doi.org/10.30970/sbi.1502.652 | ||||
Tsymbalyuk, O. V. (2018). Kinetics of relaxation of rat myometrium in conditions of inhibition of plasma membrane calcium pump and systems of active Са2+ transport of intracellular Са2+-depot. Studia Biologica, 12(2), 3-12. doi:10.30970/sbi.1202.565 Crossref ● PubMed ● PMC ● Google Scholar https://doi.org/10.30970/sbi.1202.565 | ||||
Tsymbalyuk, O. V., & Kosterin, S. O. (2013). Influence of calixarene C-90 on contractile activity of rat myometrium smooth muscles. Studia Biologica, 7(3), 5-20. doi:10.30970/sbi.0703.298 (In Ukrainian) Crossref ● PubMed ● PMC ● Google Scholar https://doi.org/10.30970/sbi.0703.298 | ||||
Tsymbalyuk O. V., & Vadzyuk O. B. (2020). Involvement of KАТР-channels of plasma and mitochondrial membranes in maintaining the contractive function of myometrium of non-pregnant rat uterus. Studia Biologica, 14(2), 3-16. doi:10.30970/sbi.1402.622 Crossref ● PubMed ● PMC ● Google Scholar https://doi.org/10.30970/sbi.1402.622 | ||||
Veklich, T. O., Shkrabak, O. A., Mazur, Yu. Yu., Rodik, R. V., Kalchenko, V. I., & Kosterin, S. O. (2014). Kinetics of inhibitory effect of calix[4]arene C-90 on activity of transporting plasma membrane Ca2+, Mg2+-ATPase of smooth muscle cells. The Ukrainian Biochemical Journal, 86(5), 37-46. doi:10.15407/ubj86.05.037 Crossref ● PubMed ● PMC ● Google Scholar https://doi.org/10.15407/ubj86.05.037 PMid:25816586 | ||||
Veklich, T. O. (2016). The inhibitory influence of calix[4]Arene of C-90 on the activity of Ca2+,Mg2+-ATPases in plasma membrane and sarcoplasmic reticulum in myometrium cells. The Ukrainian Biochemical Journal, 88(2), 5-15. doi:10.15407/ubj88.02.005 Crossref ● PubMed ● PMC ● Google Scholar https://doi.org/10.15407/ubj88.02.005 PMid:29227596 | ||||
Veklich, T., & Tsymbalyuk, O. (2023). Vplyv tiakaliks[4]arenu S-1087 na Sa2+,Mg2+-ATFazu plazmatychnoi membrany ta skorotlyvu aktyvnist miometriia [The effect of thiacalyx[4]arene C-1087 on Ca2+,Mg2+-ATPase of the plasma membrane and the contractile activity of the myometrium]. Proceedings of the VII All-Ukrainian Scientific Conference "Current Problems of Chemistry: Research and Prospects", Zhytomyr, Ukraine, 158-162. Retrieved from http://eprints.zu.edu.ua/37406/1/167-171.pdf (In Ukrainian) | ||||
Wan Omar, W. F. N., Giribabu, N., Karim, K., & Salleh, N. (2019). Marantodes pumilum (Blume) Kuntze (Kacip Fatimah) stimulates uterine contraction in rats in post-partum period. Journal of Ethnopharmacology, 245, 112175. doi:10.1016/j.jep.2019.112175 Crossref ● PubMed ● PMC ● Google Scholar https://doi.org/10.1016/j.jep.2019.112175 PMid:31442621 | ||||
Wray, S., & Arrowsmith, S. (2021). Uterine excitability and ion channels and their changes with gestation and hormonal environment. Annual Review of Physiology, 83, 331-357.doi:10.1146/annurev-physiol-032420-035509 Crossref ● PubMed ● PMC ● Google Scholar https://doi.org/10.1146/annurev-physiol-032420-035509 PMid:33158376 |
Refbacks
- There are currently no refbacks.
Copyright (c) 2023 Olga Tsymbalyuk, Tetyana Veklich, Roman Rodik, Sergiy Karakhim, Sergiy Vyshnevskyi, Vitaly Kalchenko, Sergiy Kosterin
This work is licensed under a Creative Commons Attribution 4.0 International License.