THE EFFECT OF EXTRACTS OF FRUITS OF DIFFERENT CULTIVARS OF CORNUS MAS L. ON PLASMA LIPID PROFILE IN EXPERIMENTAL DIABETES MELLITUS
DOI: http://dx.doi.org/10.30970/sbi.1701.704
Abstract
Background. Diabetes mellitus with impaired transport of glucose from the blood into the cells against the background of absolute or relative hypoinsulinemia is accompanied by the development of dyslipidemia. Therefore, it is important to find therapeutic agents capable of alleviating the symptoms and, as a result, the course of diabetes. Screening of antidiabetic agents indicates that one of their main potential sources is natural products of plant origin. However, although a wide range of plant extracts are known to be used to treat diabetes, the use of only some of them has been scientifically proven. The aim of the study was to investigate the influence of biologically active substances available in the extracts of fruits of different cultivars of Cornus mas L. on plasma lipid profile in experimental diabetes mellitus.
Materials and methods. Wistar male rats with starting weight of 140–170 g were used for all experiments. Diabetes was induced by intraperitoneal injection of streptozotocin (55 mg/kg of body weight). The animals were divided into five groups. The first (control) and the second (diabetic control) groups orally received 1 mL of water daily for 14 days. Diabetic animals of the third to fifth groups were orally administered extracts of red and yellow fruits of Cornus mas L. and the “Loganic acid” extract, respectively, in the amount of 20 mg/kg of body weight for 14 days. The concentration of low-density lipoproteins, high-density lipoproteins, triglycerides, and cholesterol was determined in the rats’ blood plasma. Atherogenic indices were calculated based on lipid profile in blood plasma.
Results. The total cholesterol content in diabetic rats’ blood plasma was reliably reduced when the extract of the red fruits of the Cornus mas L. “Podolski” cultivar was administered. “Loganic acid” extract, obtained from the yellow fruits of the “Yantarnyi” and “Flava” cultivars of Cornus mas L., decreased the concentration of total cholesterol, triglycerides, and the content of low-density lipoproteins against the background of an increase in the content of high-density lipoproteins in blood plasma. The atherogenic indexes made it possible to establish that the degree of risk of cardiovascular complications due to diabetes is significantly reduced against the background of the administration of extracts of cornelian cherry fruits.
Conclusions. Extracts of the fruits of the “Podolski”, “Yantarnyi” and “Flava” cultivars of Cornus mas L. correct the lipid profile of blood plasma in streptozotocin-induced diabetes animals and, as a result, may potentially prevent the development of atherosclerotic changes and cardiovascular complications. The fruits of Cornus mas L. may be potential agents in the therapy of dyslipidemia in diabetes.
Keywords
Full Text:
PDFReferences
Akpınar, O., Bozkurt, A., Acartürk, E., & Seydaoğlu, G. (2013). A new index (CHOLINDEX) in detecting coronary artery disease risk. Anadolu Kardiyoloji Dergisi/The Anatolian Journal of Cardiology, 13(4), 315-319. doi:10.5152/akd.2013.098 Crossref ● PubMed ● Google Scholar | ||||
| ||||
Alexopoulos, A.-S., Qamar, A., Hutchins, K., Crowley, M. J., Batch, B. C., & Guyton, J. R. (2019). Triglycerides: emerging targets in diabetes care? Review of moderate hypertriglyceridemia in diabetes. Current Diabetes Reports, 19(4), 13. doi:10.1007/s11892-019-1136-3 Crossref ● PubMed ● PMC ● Google Scholar | ||||
| ||||
Danielewski, M., Matuszewska, A., Szeląg, A., & Sozański, T. (2021). The impact of anthocyanins and iridoids on transcription factors crucial for lipid and cholesterol homeostasis. International Journal of Molecular Sciences. 22(11), 6074. doi:/10.3390/ijms22116074 Crossref ● PubMed ● PMC ● Google Scholar | ||||
| ||||
Davies, L. C., Rice, C. M., McVicar, D. W., & Weiss, J. M. (2018). Diversity and environmental adaptation of phagocytic cell metabolism. Journal of Leukocyte Biology, 105(1), 37-48. doi:10.1002/jlb.4ri0518-195r Crossref ● PubMed ● PMC ● Google Scholar | ||||
| ||||
Dobiášová, M., & Frohlich, J. (2001). The plasma parameter log (TG/HDL-C) as an atherogenic index: correlation with lipoprotein particle size and esterification rate inapob-lipoprotein-depleted plasma (FERHDL). Clinical Biochemistry, 34(7), 583-588. doi:10.1016/s0009-9120(01)00263-6 Crossref ● PubMed ● Google Scholar | ||||
| ||||
Dzydzan, O., Bila, I., Kucharska, A. Z., Brodyak, I., & Sybirna, N. (2019). Antidiabetic effects of extracts of red and yellow fruits of cornelian cherries (Cornus mas L.) on rats with streptozotocin-induced diabetes mellitus. Food & Function, 10(10), 6459-6472. doi:10.1039/c9fo00515c Crossref ● PubMed ● Google Scholar | ||||
| ||||
Dzydzan, O., Brodyak, I., Sokół-Łętowska, A., Kucharska, A. Z., & Sybirna, N. (2020). Loganic acid, an iridoid glycoside extracted from Cornus mas L. fruits, reduces of carbonyl/oxidative stress biomarkers in plasma and restores antioxidant balance in leukocytes of rats with streptozotocin-induced diabetes mellitus. Life, 10(12), 349. doi:10.3390/life10120349 Crossref ● PubMed ● PMC ● Google Scholar | ||||
| ||||
Dzydzan, O., Brodyak, I., Strugała-Danak, P., Strach, A., Kucharska, A. Z., Gabrielska, J., & Sybirna, N. (2022). Biological activity of extracts of red and yellow fruits of Cornus mas L. - an in vitro evaluation of antioxidant activity, inhibitory activity against α-glucosidase, acetylcholinesterase, and binding capacity to human serum albumin. Molecules, 27(7), 2244. doi:10.3390/molecules27072244 Crossref ● PubMed ● PMC ● Google Scholar | ||||
| ||||
Efenberger-Szmechtyk, M., Nowak, A., Czyżowska, A., Kucharska, A. Z., & Fecka, I. (2020). Composition and antibacterial activity of Aronia melanocarpa (Michx.) Elliot, Cornus mas L. and Chaenomeles superba Lindl. leaf extracts. Molecules, 25(9), 2011. doi:10.3390/molecules25092011 Crossref ● PubMed ● PMC ● Google Scholar | ||||
| ||||
Hosseinpour, F., Shomali, T., & Rafieian-Kopaei, M. (2017). Hypocholesterolemic activity of cornelian cherry (Cornus mas L.) fruits. Journal of Complementary and Integrative Medicine, 14(4). doi:10.1515/jcim-2017-0007 Crossref ● PubMed ● Google Scholar | ||||
| ||||
Kamoru, A. A., Japhet, O. M., Adetunji, A. D., Musa, M. A., Akinlawon, A. A., Abdufatah, O. A., Taofik, A. A., & Kabiru, A. A. (2017). Castelli risk index, atherogenic index of plasma, and atherogenic coefficient: emerging risk predictors of cardiovascular disease in HIV-treated patients. Saudi Journal of Medical and Pharmaceutical Sciences, 3(10), 1101-1110. Google Scholar | ||||
| ||||
Kuchurka, О. М., Chaban, М. O., Dzydzan, O. V., Brodyak, I. V., & Sybirna, N. O. (2022). Leukocytes in type 1 diabetes mellitus: the changes they undergo and induce. Studia Biologica, 16(1), 47-66. doi:10.30970/sbi.1601.674 Crossref ● Google Scholar | ||||
| ||||
Seniv, M. B., Dzydzan, O. V., Brodyak, I. V., Kucharska, A. Z., & Sybirna, N. O. (2021). Antioxidant effect of extract of yellow fruits of cornelian cherry (Cornus mas L.) in rats' leukocytes under streptozotocin-induced diabetes mellitus. Studia Biologica, 15(1), 15-26. doi:10.30970/sbi.1501.645 Crossref ● Google Scholar | ||||
| ||||
Soliman, G. (2018). Dietary cholesterol and the lack of evidence in cardiovascular disease. Nutrients, 10(6), 780. doi:10.3390/nu10060780 Crossref ● PubMed ● PMC ● Google Scholar | ||||
| ||||
Sozański, T., Kucharska, A. Z., Rapak, A., Szumny, D., Trocha, M., Merwid-Ląd, A., Dzimira, S., Piasecki, T., Piórecki, N., Magdalan, J., & Szeląg, A. (2016). Iridoid - loganic acid versus anthocyanins from the Cornus mas fruits (cornelian cherry): common and different effects on diet-induced atherosclerosis, PPARs expression and inflammation. Atherosclerosis, 254, 151-160. doi:10.1016/j.atherosclerosis.2016.10.001 Crossref ● PubMed ● Google Scholar | ||||
| ||||
Sybirna, N. O. (Ed.), Hachkova, G. Ya., Brodyak, I. V., Sybirna, K. A., Khokhla, M. R., Sabadashka, M. V. (2018). Funktsionalna biokhimiia [Functional biochemistry]. Lviv: Ivan Franko National University of Lviv. (In Ukrainian) | ||||
| ||||
Tang, C., Li, H.-J., Fan, G., Kuang, T.-T., Meng, X.-L., Zou Z.-M., & Zhang, Y. (2018). Network pharmacology and UPLC-Q-TOF/MS studies on the anti-arthritic mechanism of Pterocephalus hookeri. Tropical Journal of Pharmaceutical Research, 17(6), 1095-1110. doi:10.4314/tjpr.v17i6.17 Crossref ● Google Scholar | ||||
| ||||
Vergès, B. (2015). Pathophysiology of diabetic dyslipidaemia: where are we? Diabetologia, 58(5), 886-899. doi:10.1007/s00125-015-3525-8 Crossref ● PubMed ● PMC ● Google Scholar | ||||
| ||||
Wu, L., & Parhofer, K. G. (2014). Diabetic dyslipidemia. Metabolism, 63(12), 1469-1479. doi:10.1016/j.metabol.2014.08.010 Crossref ● PubMed ● Google Scholar | ||||
| ||||
Zhang, P., Li, T., Wu, X., Nice, E. C., Huang, C., & Zhang, Y. (2020). Oxidative stress and diabetes: antioxidative strategies. Frontiers of Medicine, 14(5), 583-600. doi:10.1007/s11684-019-0729-1 Crossref ● PubMed ● Google Scholar |
Refbacks
- There are currently no refbacks.
Copyright (c) 2023 I. V. Brodyak, M. O. Chaban, A. A. Moroz, A. Z. Kucharska, N. O. Sybirna
This work is licensed under a Creative Commons Attribution 4.0 International License.