THE EFFECT OF EXTRACTS OF FRUITS OF DIFFERENT CULTIVARS OF CORNUS MAS L. ON PLASMA LIPID PROFILE IN EXPERIMENTAL DIABETES MELLITUS

I. V. Brodyak, M. O. Chaban, A. A. Moroz, A. Z. Kucharska, N. O. Sybirna


DOI: http://dx.doi.org/10.30970/sbi.1701.704

Abstract


Background. Diabetes mellitus with impaired transport of glucose from the blood into the cells against the background of absolute or relative hypoinsulinemia is accompanied by the development of dyslipidemia. Therefore, it is important to find therapeutic agents capable of alleviating the symptoms and, as a result, the course of diabetes. Screening of antidiabetic agents indicates that one of their main potential sources is natural products of plant origin. However, although a wide range of plant extracts are known to be used to treat diabetes, the use of only some of them has been scientifically proven. The aim of the study was to investigate the influence of biologically active substances available in the extracts of fruits of different cultivars of Cornus mas L. on plasma lipid profile in experimental diabetes mellitus.
Materials and methods. Wistar male rats with starting weight of 140–170 g were used for all experiments. Diabetes was induced by intraperitoneal injection of streptozotocin (55 mg/kg of body weight). The animals were divided into five groups. The first (control) and the second (diabetic control) groups orally received 1 mL of water daily for 14 days. Diabetic animals of the third to fifth groups were orally administered extracts of red and yellow fruits of Cornus mas L. and the “Loganic acid” extract, respectively, in the amount of 20 mg/kg of body weight for 14 days. The concentration of low-density lipoproteins, high-density lipoproteins, triglycerides, and cholesterol was determined in the rats’ blood plasma. Atherogenic indices were calculated based on lipid profile in blood plasma.
Results. The total cholesterol content in diabetic rats’ blood plasma was reliably reduced when the extract of the red fruits of the Cornus mas L. “Podolski” cultivar was administered. “Loganic acid” extract, obtained from the yellow fruits of the “Yantarnyi” and “Flava” cultivars of Cornus mas L., decreased the concentration of total cholesterol, triglycerides, and the content of low-density lipoproteins against the background of an increase in the content of high-density lipoproteins in blood plasma. The atherogenic indexes made it possible to establish that the degree of risk of cardiovascular complications due to diabetes is significantly reduced against the background of the administration of extracts of cornelian cherry fruits.
Conclusions. Extracts of the fruits of the “Podolski”, “Yantarnyi” and “Flava” cultivars of Cornus mas L. correct the lipid profile of blood plasma in streptozotocin-induced diabetes animals and, as a result, may potentially prevent the development of atherosclerotic changes and cardiovascular complications. The fruits of Cornus mas L. may be potential agents in the therapy of dyslipidemia in diabetes.


Keywords


diabetes mellitus, low-density lipoproteins (LDL), high-density lipoproteins (HDL), triglycerides (TG), total cholesterol (Total CHOL), dyslipidemia, extracts of cornelian cherry fruits (Cornus mas L.)

Full Text:

PDF

References


Akpınar, O., Bozkurt, A., Acartürk, E., & Seydaoğlu, G. (2013). A new index (CHOLINDEX) in detecting coronary artery disease risk. Anadolu Kardiyoloji Dergisi/The Anatolian Journal of Cardiology, 13(4), 315-319. doi:10.5152/akd.2013.098
CrossrefPubMedGoogle Scholar

Alexopoulos, A.-S., Qamar, A., Hutchins, K., Crowley, M. J., Batch, B. C., & Guyton, J. R. (2019). Triglycerides: emerging targets in diabetes care? Review of moderate hypertriglyceridemia in diabetes. Current Diabetes Reports, 19(4), 13. doi:10.1007/s11892-019-1136-3
CrossrefPubMedPMCGoogle Scholar

Danielewski, M., Matuszewska, A., Szeląg, A., & Sozański, T. (2021). The impact of anthocyanins and iridoids on transcription factors crucial for lipid and cholesterol homeostasis. International Journal of Molecular Sciences. 22(11), 6074. doi:/10.3390/ijms22116074
CrossrefPubMedPMCGoogle Scholar

Davies, L. C., Rice, C. M., McVicar, D. W., & Weiss, J. M. (2018). Diversity and environmental adaptation of phagocytic cell metabolism. Journal of Leukocyte Biology, 105(1), 37-48. doi:10.1002/jlb.4ri0518-195r
CrossrefPubMedPMCGoogle Scholar

Dobiášová, M., & Frohlich, J. (2001). The plasma parameter log (TG/HDL-C) as an atherogenic index: correlation with lipoprotein particle size and esterification rate inapob-lipoprotein-depleted plasma (FERHDL). Clinical Biochemistry, 34(7), 583-588. doi:10.1016/s0009-9120(01)00263-6
CrossrefPubMedGoogle Scholar

Dzydzan, O., Bila, I., Kucharska, A. Z., Brodyak, I., & Sybirna, N. (2019). Antidiabetic effects of extracts of red and yellow fruits of cornelian cherries (Cornus mas L.) on rats with streptozotocin-induced diabetes mellitus. Food & Function, 10(10), 6459-6472. doi:10.1039/c9fo00515c
CrossrefPubMedGoogle Scholar

Dzydzan, O., Brodyak, I., Sokół-Łętowska, A., Kucharska, A. Z., & Sybirna, N. (2020). Loganic acid, an iridoid glycoside extracted from Cornus mas L. fruits, reduces of carbonyl/oxidative stress biomarkers in plasma and restores antioxidant balance in leukocytes of rats with streptozotocin-induced diabetes mellitus. Life, 10(12), 349. doi:10.3390/life10120349
CrossrefPubMedPMCGoogle Scholar

Dzydzan, O., Brodyak, I., Strugała-Danak, P., Strach, A., Kucharska, A. Z., Gabrielska, J., & Sybirna, N. (2022). Biological activity of extracts of red and yellow fruits of Cornus mas L. - an in vitro evaluation of antioxidant activity, inhibitory activity against α-glucosidase, acetylcholinesterase, and binding capacity to human serum albumin. Molecules, 27(7), 2244. doi:10.3390/molecules27072244
CrossrefPubMedPMCGoogle Scholar

Efenberger-Szmechtyk, M., Nowak, A., Czyżowska, A., Kucharska, A. Z., & Fecka, I. (2020). Composition and antibacterial activity of Aronia melanocarpa (Michx.) Elliot, Cornus mas L. and Chaenomeles superba Lindl. leaf extracts. Molecules, 25(9), 2011. doi:10.3390/molecules25092011
CrossrefPubMedPMCGoogle Scholar

Hosseinpour, F., Shomali, T., & Rafieian-Kopaei, M. (2017). Hypocholesterolemic activity of cornelian cherry (Cornus mas L.) fruits. Journal of Complementary and Integrative Medicine, 14(4). doi:10.1515/jcim-2017-0007
CrossrefPubMedGoogle Scholar

Kamoru, A. A., Japhet, O. M., Adetunji, A. D., Musa, M. A., Akinlawon, A. A., Abdufatah, O. A., Taofik, A. A., & Kabiru, A. A. (2017). Castelli risk index, atherogenic index of plasma, and atherogenic coefficient: emerging risk predictors of cardiovascular disease in HIV-treated patients. Saudi Journal of Medical and Pharmaceutical Sciences, 3(10), 1101-1110.
Google Scholar

Kuchurka, О. М., Chaban, М. O., Dzydzan, O. V., Brodyak, I. V., & Sybirna, N. O. (2022). Leukocytes in type 1 diabetes mellitus: the changes they undergo and induce. Studia Biologica, 16(1), 47-66. doi:10.30970/sbi.1601.674
CrossrefGoogle Scholar

Seniv, M. B., Dzydzan, O. V., Brodyak, I. V., Kucharska, A. Z., & Sybirna, N. O. (2021). Antioxidant effect of extract of yellow fruits of cornelian cherry (Cornus mas L.) in rats' leukocytes under streptozotocin-induced diabetes mellitus. Studia Biologica, 15(1), 15-26. doi:10.30970/sbi.1501.645
CrossrefGoogle Scholar

Soliman, G. (2018). Dietary cholesterol and the lack of evidence in cardiovascular disease. Nutrients, 10(6), 780. doi:10.3390/nu10060780
CrossrefPubMedPMCGoogle Scholar

Sozański, T., Kucharska, A. Z., Rapak, A., Szumny, D., Trocha, M., Merwid-Ląd, A., Dzimira, S., Piasecki, T., Piórecki, N., Magdalan, J., & Szeląg, A. (2016). Iridoid - loganic acid versus anthocyanins from the Cornus mas fruits (cornelian cherry): common and different effects on diet-induced atherosclerosis, PPARs expression and inflammation. Atherosclerosis, 254, 151-160. doi:10.1016/j.atherosclerosis.2016.10.001
CrossrefPubMedGoogle Scholar

Sybirna, N. O. (Ed.), Hachkova, G. Ya., Brodyak, I. V., Sybirna, K. A., Khokhla, M. R., Sabadashka, M. V. (2018). Funktsionalna biokhimiia [Functional biochemistry]. Lviv: Ivan Franko National University of Lviv. (In Ukrainian)

Tang, C., Li, H.-J., Fan, G., Kuang, T.-T., Meng, X.-L., Zou Z.-M., & Zhang, Y. (2018). Network pharmacology and UPLC-Q-TOF/MS studies on the anti-arthritic mechanism of Pterocephalus hookeri. Tropical Journal of Pharmaceutical Research, 17(6), 1095-1110. doi:10.4314/tjpr.v17i6.17
CrossrefGoogle Scholar

Vergès, B. (2015). Pathophysiology of diabetic dyslipidaemia: where are we? Diabetologia, 58(5), 886-899. doi:10.1007/s00125-015-3525-8
CrossrefPubMedPMCGoogle Scholar

Wu, L., & Parhofer, K. G. (2014). Diabetic dyslipidemia. Metabolism, 63(12), 1469-1479. doi:10.1016/j.metabol.2014.08.010
CrossrefPubMedGoogle Scholar

Zhang, P., Li, T., Wu, X., Nice, E. C., Huang, C., & Zhang, Y. (2020). Oxidative stress and diabetes: antioxidative strategies. Frontiers of Medicine, 14(5), 583-600. doi:10.1007/s11684-019-0729-1
CrossrefPubMedGoogle Scholar


Refbacks

  • There are currently no refbacks.


Copyright (c) 2023 I. V. Brodyak, M. O. Chaban, A. A. Moroz, A. Z. Kucharska, N. O. Sybirna

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.