SCREENING OF ANTICANDIDAL ACTIVITY OF VACCINIUM CORYMBOSUM SHOOTS’ EXTRACTS AND CONTENT OF POLYPHENOLIC COMPOUNDS DURING SEASONAL VARIATION

H. V. Yavorska, N. M. Vorobets, N. Y. Yavorska, R. V. Fafula


DOI: http://dx.doi.org/10.30970/sbi.1701.699

Abstract


Background. A comprehensive analysis of polyphenols (flavonoids and proanthocyanidins) content of aqueous and hydroethanolic shoots’ extracts of Vaccinium corymbosum L. (highbush blueberry) (HB) cv. Elliott was performed.
Materials and Methods. In this study, water and various concentrations of aqueous-ethanol (AE) were used as extragents, and plant material – the shoots of V. corymbosum harvested at stages of flowering (I), fruiting (II), after fruiting (III), and at the beginning of winter dormancy (IV). The anticandidal activity of aqueous (A) and AE extracts was studied with five strains of fungi: Candida pseudotropicalis (Kluyveromyces marxianus ATCC 4922=VKM Y-922), C. curvata (Cutaneotrichosporon curvatus ATCC 10567=VKM Y-2230), C. kefyr (Kluyveromyces marxianus VKM Y-459), C. parapsilosis ATCC 22019=UKM Y-73т=VKM Y-58 and C. tenuis ATCC 10573=UKM Y-1525т (Yamadazyma tenuis ATCC 10573=VKM Y-70). These strains were treated with extracts to investigate their effect on the growth of these microorganisms in vitro and compare with commercially available herbal medicinal extracts and antiseptic drugs. Anticandidal activity has been compared with the content of total phenolic compounds (flavonoids and proanthocyanidins).
Results. Our results reveal that phenolic compounds concentration of V. corymbosum shoots’ extracts were significantly dependent on extragents and the stage of growth. The total content of phenolic compounds in aqueous-ethanol extracts was generally higher than aqueous and depended on the concentration of aqueous-ethanol. The highest extraction yield of total phenolic compounds was obtained using 40–80%-AE at all investigated stages. The highest content of flavonoids (105–123 mg·g-1 DW in quercetin equivalent) was observed at the stage of winter dormancy (IV). The content of proanthocyanidins was the highest at stages II and IV, and with 40–96% AEs as solvents; their contents varied within 178–239 mg·g-1 DW in catechin equivalent. Extracts prepared with 40–80% AE have pronounced inhibitory activities against all investigated Candida spp., but the maximum inhibition zone of a single strain may vary. High correlations indicate the determining effect of proanthocyanidins on the anticandidal activity of the extract.
Conclusions. The study results indicate that V. corymbosum shoots may have promising properties in supporting therapy as anticandidal drugs.


Keywords


Vaccinium corymbosum cv. Elliott shoot, phenolics, flavonoids, proanthocyanidins, anticandidal activity

Full Text:

PDF

References


Cezarotto, V., Giacomelli, S., Vendruscolo, M., Vestena, A., Cezarotto, C., da Cruz, R., Maurer, L., Ferreira, L., Emanuelli, T., & Cruz, L. (2017). Influence of harvest season and cultivar on the variation of phenolic compounds composition and antioxidant properties in Vaccinium ashei leaves. Molecules, 22(10), 1603. doi:10.3390/molecules22101603
CrossrefPubMedPMCGoogle Scholar

Chew, K. K., Ng, S. Y., Thoo, Y. Y., Khoo, M. Z., Wan Aida, W. M., & Ho, C. W. (2011). Effect of ethanol concentration, extraction time and extraction temperature on the recovery of phenolic compounds and antioxidant capacity of Centella asiatica extracts. International Food Research Journal, 18(2), 571-578.
Google Scholar

Fraga, C. G., Croft, K. D., Kennedy, D. O., & Tomás-Barberán, F. A. (2019). The effects of polyphenols and other bioactives on human health. Food & Function, 10(2), 514-528. doi:10.1039/c8fo01997e
CrossrefPubMedGoogle Scholar

Growth Stages. Blueberries. Michigan State University. (n. d.). Available at: https://www.canr.msu.edu/blueberries/growing_blueberries/growth-stages

Johnson, S., & Arjmandi, B. (2013). Evidence for anti-cancer properties of blueberries: a mini-review. Anti-Cancer Agents in Medicinal Chemistry, 13(8), 1142-1148. doi:10.2174/18715206113139990137
CrossrefPubMedGoogle Scholar

Joshi, S. S., Howell, A. B., & D'Souza, D. H. (2016). Reduction of enteric viruses by blueberry juice and blueberry proanthocyanidins. Food and Environmental Virology, 8(4), 235-243. doi:10.1007/s12560-016-9247-3
CrossrefPubMedGoogle Scholar

Kajdžanoska, M., Petreska, J., & Stefova, M. (2011). Comparison of different extraction solvent mixtures for characterization of phenolic compounds in strawberries. Journal of Agricultural and Food Chemistry, 59(10), 5272-5278. doi:10.1021/jf2007826
CrossrefPubMedGoogle Scholar

Kelly, E., Vyas, P., & Weber, J. (2017). Biochemical properties and neuroprotective effects of compounds in various species of berries. Molecules, 23(1), 26. doi:10.3390/molecules23010026
CrossrefPubMedPMCGoogle Scholar

Lynn, D. G., & Chang, M. (1990). Phenolic signals in cohabitation: implications for plant development. Annual Review of Plant Physiology and Plant Molecular Biology, 41(1), 497-526. doi:10.1146/annurev.pp.41.060190.002433
CrossrefGoogle Scholar

Mierziak, J., Kostyn, K., & Kulma, A. (2014). Flavonoids as important molecules of plant interactions with the environment. Molecules, 19(10), 16240-16265. doi:10.3390/molecules191016240
CrossrefPubMedPMCGoogle Scholar

Missouri Botanical Garden. (2022). Available at: https://www.missouribotanicalgarden.org/PlantFinder/PlantFinderDetails.aspx?taxonid=264361&isprofile=0&

Noorul, H., Mujahid, M., Badruddeen, Khalid, M., Vartika, S., Nesar, A., Zafar, K., & Zohrameena, S. (2017). Physico-phytochemical analysis & Estimation of total phenolic, flavonoids and proanthocyanidin content of Persea americana (avocado) seed extracts. World Journal of Pharmaceutical Sciences, 5(4), 70-77.
Google Scholar

Piljac-Žegarac, J., Belščak, A., & Piljac, A. (2009). Antioxidant capacity and polyphenolic content of blueberry (Vaccinium corymbosum L.) leaf infusions. Journal of Medicinal Food, 12(3), 608-614. doi:10.1089/jmf.2008.0081
CrossrefPubMedGoogle Scholar

Puupponen-Pimiä, R., Nohynek, L., Hartmann-Schmidlin, S., Kähkönen, M., Heinonen, M., Määttä-Riihinen, K., & Oksman-Caldentey, K.-M. (2005). Berry phenolics selectively inhibit the growth of intestinal pathogens. Journal of Applied Microbiology, 98(4), 991-1000. doi:10.1111/j.1365-2672.2005.02547.x
CrossrefPubMedGoogle Scholar

Riihinen, K., Jaakola, L., Kärenlampi, S., & Hohtola, A. (2008). Organ-specific distribution of phenolic compounds in bilberry (Vaccinium myrtillus) and 'northblue' blueberry (Vaccinium corymbosum x V. angustifolium). Food Chemistry, 110(1), 156-160. doi:10.1016/j.foodchem.2008.01.057
CrossrefPubMedGoogle Scholar

Ruskovska, T., Maksimova, V., & Milenkovic, D. (2020). Polyphenols in human nutrition: from the in vitro antioxidant capacity to the beneficial effects on cardiometabolic health and related inter-individual variability - an overview and perspective. British Journal of Nutrition, 123(3), 241-254. doi:10.1017/s0007114519002733
CrossrefPubMedGoogle Scholar

Sharma, A., Shahzad, B., Rehman, A., Bhardwaj, R., Landi, M., & Zheng, B. (2019). Response of phenylpropanoid pathway and the role of polyphenols in plants under abiotic stress. Molecules, 24(13), 2452. doi:10.3390/molecules24132452
CrossrefPubMedPMCGoogle Scholar

Siddiq, M., & Dolan, K. D. (2017). Characterization of polyphenol oxidase from blueberry (Vaccinium corymbosum L.). Food Chemistry, 218, 216-220. doi:10.1016/j.foodchem.2016.09.061
CrossrefPubMedGoogle Scholar

Siefker, J. H., & Hancock, J. F. (1986). Yield component interactions in cultivars of the highbush blueberry. Journal of the American Society for Horticultural Science, 111(4), 606-608. doi:10.21273/jashs.111.4.606
CrossrefGoogle Scholar

Sklyar, T., Gavryliuk, V., Lavrentievа, K., Kurahina, N., Lykholat, T., Zaichenko, K., Papiashvili, M., Lykholat, O., & Stepansky, D. (2021). Monitoring of distribution of antibiotic-resistant strains of microorganisms in patients with dysbiosis of the urogenital tract. Regulatory Mechanisms in Biosystems, 12(2), 199-205. doi:10.15421/022128
CrossrefGoogle Scholar

Sun, Y., Li, M., Mitra, S., Hafiz Muhammad, R., Debnath, B., Lu, X., Jian, H., & Qiu, D. (2018). Comparative phytochemical profiles and antioxidant enzyme activity analyses of the southern highbush blueberry (Vaccinium corymbosum) at different developmental stages. Molecules, 23(9), 2209. doi:10.3390/molecules23092209
CrossrefPubMedPMCGoogle Scholar

Tian, Y., Liimatainen, J., Alanne, A.-L., Lindstedt, A., Liu, P., Sinkkonen, J., Kallio, H., & Yang, B. (2017). Phenolic compounds extracted by acidic aqueous ethanol from berries and leaves of different berry plants. Food Chemistry, 220, 266-281. doi:10.1016/j.foodchem.2016.09.145
CrossrefPubMedGoogle Scholar

Vorobets, N. M., & Yavorska, H. V. (2016). Modifications of agar diffusion method to determination of the antimicrobial effect of the herbal medicinal products. Ukraïns'kij Bìofarmacevtičnij Žurnal, 2(43), 80-84. doi:10.24959/ubphj.16.30
CrossrefGoogle Scholar

Wang, H., Guo, X., Hu, X., Li, T., Fu, X., & Liu, R. H. (2017). Comparison of phytochemical profiles, antioxidant and cellular antioxidant activities of different varieties of blueberry (Vaccinium spp.). Food Chemistry, 217, 773-781. doi:10.1016/j.foodchem.2016.09.002
CrossrefPubMedGoogle Scholar

WHO Antibiotic resistance. (2020). Available at: https://www.who.int/news-room/fact-sheets/detail/antibiotic-resistance

Yavorska, N. Y., Vorobets, N. M., Salyha, Yu. T., & Vishchur, O. I. (2020). Preliminary comparative phytochemical screening and antioxidant activity of varieties Vaccinium corymbosum L. (Ericaceae) shoot' extracts. The Animal Biology, 22(4), 3-8. doi:10.15407/animbiol22.04.003
CrossrefGoogle Scholar

Yavorska, N., & Vorobets, N. (2020). Seasonal variation in the polyphenols and flavonoids content in shoots of highbush blueberry cultivars during vegetation stages. Bulletin of Problems in Biology and Medicine, 3(157), 70-75. doi:10.29254/2077-4214-2020-3-157-70-75 (In Ukrainian)
CrossrefGoogle Scholar

Yu, D., Huang, T., Tian, B., & Zhan, J. (2020). Advances in biosynthesis and biological functions of proanthocyanidins in horticultural plants. Foods, 9(12), 1774. doi:10.3390/foods9121774
CrossrefPubMedPMCGoogle Scholar


Refbacks

  • There are currently no refbacks.


Copyright (c) 2023 H. V. Yavorska, N. M. Vorobets, N. Y. Yavorska, R. V. Fafula

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.