PRUSSIAN BLUE AND ITS ANALOGUES OF AS ARTIFICIAL ENZYMES AND PROSPECTS FOR THEIR USE

O. M. Demkiv, N. Ye. Stasyuk, G. Z. Gayda, А. E. Zakalskiy, N. M. Grynchyshyn, М. R. Hrytsyna, O. T. Novikevych, M. L. Zastryzhna, O. V. Semiion-Luchyshyn, M. V. Gonchar


DOI: http://dx.doi.org/10.30970/sbi.1701.700

Abstract


In recent years, Prussian blue nanoparticles (PB-NPs) and theire analogues, that exhibit an increased catalytic activity, have attracted considerable attention in nanotechnology. Such nanoparticles are regarded as an alternative to natural enzymes and are intensively used in biosensorics, diagnostics and experimental biomedicine. Recently, it has been shown that Prussian blue nanoparticles and their analogs, also referred to as “nanozymes”, can be used as active oxygen scavengers and antibacterial or anti-inflammatory drugs due to their polyenzymatic activities, namely oxidase, peroxidase, superoxide dismutase. Their excellent biocompatibility and biodegradability mean that they are ideal for in vivo use. Prussian blue nanoparticles are highly efficient electron transporters that engage in oxidation and reduction activity, which makes them promising mediators and catalysts of reactions. They also show great promise as nanodrug carriers and biological detection sensors due to their large specific surface area, unique chemical characteristics, and variable qualities, which, more importantly, can significantly increase their therapeutic effect. Prussian blue nanoparticles, as therapeutic and diagnostic tools, have achieved significant success in biological nanomedicine. This review is devoted to the methods of synthesis of Prussian blue nanoparticles, the study of their structure, properties and role in the creation of analytical sensors and their promising significance for biomedicine.


Keywords


nanotechnology, nanoparticles, Prussian blue and its analogues, nanozyme, artificial enzyme

References


Chen, J., Wang, Q., Huang, L., Zhang, H., Rong, K., Zhang, H., & Dong, S. (2018). Prussian blue with intrinsic heme-like structure as peroxidase mimic. Nano Research, 11(9), 4905-4913. doi:10.1007/s12274-018-2079-8
CrossrefGoogle Scholar

Chen, J., Wei, L., Mahmood, A., Pei, Z., Zhou, Z., Chen, X., & Chen, Y. (2020). Prussian blue, its analogues and their derived materials for electrochemical energy storage and conversion. Energy Storage Materials, 25, 585-612. doi:10.1016/j.ensm.2019.09.024
CrossrefGoogle Scholar

Cui, F., Deng, Q., & Sun, L. (2015). Prussian blue modified metal-organic framework MIL-101(Fe) with intrinsic peroxidase-like catalytic activity as a colorimetric biosensing platform. RSC Advances, 5(119), 98215-98221. doi:10.1039/c5ra18589k
CrossrefGoogle Scholar

Čunderlová, V., Hlaváček, A., Horňáková, V., Peterek, M., Němeček, D., Hampl, A., Eyer, L., & Skládal, P. (2015). Catalytic nanocrystalline coordination polymers as an efficient peroxidase mimic for labeling and optical immunoassays. Microchimica Acta, 183(2), 651-658. doi:10.1007/s00604-015-1697-z
CrossrefGoogle Scholar

Davidson, D. (1937). The Prussian blue paradox. Journal of Chemical Education, 14(5), 238-241. doi:10.1021/ed014p238
CrossrefGoogle Scholar

Estelrich, J., & Busquets, M. A. (2021). Prussian blue: a nanozyme with versatile catalytic properties. International Journal of Molecular Sciences, 22(11), 5993. doi:10.3390/ijms22115993
CrossrefPubMedPMCGoogle Scholar

Farka, Z., Čunderlová, V., Horáčková, V., Pastucha, M., Mikušová, Z., Hlaváček, A., & Skládal, P. (2018). Prussian blue nanoparticles as a catalytic label in a sandwich nanozyme-linked immunosorbent assay. Analytical Chemistry, 90(3), 2348-2354. doi:10.1021/acs.analchem.7b04883
CrossrefPubMedGoogle Scholar

Fiorito, P. A., Gonçales, V. R., Ponzio, E. A., & de Torresi, S. I. C. (2005). Synthesis, characterization and immobilization of Prussian blue nanoparticles. A potential tool for biosensing devices. Chemical Communications, 3, 366-368. doi:10.1039/b412583e
CrossrefPubMedGoogle Scholar

Fu, J., Wu, Q., Dang, Y., Lei, X., Feng, G., Chen, M., & Yu, X.-Y. (2021). Synergistic therapy using doxorubicin-loading and nitric oxide-generating hollow Prussian blue nanoparticles with photoacoustic imaging potential against breast cancer. International Journal of Nanomedicine, 16, 6003-6016. doi:10.2147/ijn.s327598
CrossrefPubMedPMCGoogle Scholar

Gayda, G. Z., Demkiv, O. M., Gurianov, Y., Serkiz, R. Ya., Klepach, H. M., Gonchar, M. V., & Nisnevitch, M. (2021). "Green" Prussian blue analogues as peroxidase mimetics for amperometric sensing and biosensing. Biosensors, 11(6), 193. doi:10.3390/bios11060193
CrossrefPubMedPMCGoogle Scholar

He, L., Li, Z., Guo, C., Hu, B., Wang, M., Zhang, Z., & Du, M. (2019). Bifunctional bioplatform based on NiCo Prussian blue analogue: label-free impedimetric aptasensor for the early detection of carcino-embryonic antigen and living cancer cells. Sensors and Actuators B: Chemical, 298, 126852. doi:10.1016/j.snb.2019.126852
CrossrefGoogle Scholar

Hou, J., Vázquez-González, M., Fadeev, M., Liu, X., Lavi, R., & Willner, I. (2018). Catalyzed and electrocatalyzed oxidation of L-tyrosine and L-phenylalanine to dopachrome by nanozymes. Nano Letters, 18(6), 4015-4022. doi:10.1021/acs.nanolett.8b01522
CrossrefPubMedGoogle Scholar

Hou, W., Ye, C., Chen, M., Gao, W., Xie, X., Wu, J., Zhang, K., Zhang, W., Zheng, Y., & Cai, X. (2021). Excavating bioactivities of nanozyme to remodel microenvironment for protecting chondrocytes and delaying osteoarthritis. Bioactive Materials, 6(8), 2439-2451. doi:10.1016/j.bioactmat.2021.01.016
CrossrefPubMedPMCGoogle Scholar

Itaya, K., Uchida, I., & Neff, V. D. (1986). Electrochemistry of polynuclear transition metal cyanides: Prussian blue and its analogues. Accounts of Chemical Research, 19(6), 162-168. doi:10.1021/ar00126a001
CrossrefGoogle Scholar

Ivanov, V. D. (2019). Four decades of electrochemical investigation of Prussian blue. Ionics, 26(2), 531-547. doi:10.1007/s11581-019-03292-y
CrossrefGoogle Scholar

Jia, Z., & Sun, G. (2007). Preparation of prussian blue nanoparticles with single precursor. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 302(1-3), 326-329. doi:10.1016/j.colsurfa.2007.02.053
CrossrefGoogle Scholar

Karyakin, A. A. (2001). Prussian blue and its analogues: electrochemistry and analytical applications. Electroanalysis, 13, 10, 813-819. doi:10.1002/1521-4109(200106)13:10<813::AID-ELAN813>3.0.CO;2-Z
CrossrefGoogle Scholar

Khramtsov, P., Kropaneva, M., Minin, A., Bochkova, M., Timganova, V., Maximov, A., Puzik, A., Zamorina, S., & Rayev, M. (2022). Prussian blue nanozymes with enhanced catalytic activity: size tuning and application in ELISA-like immunoassay. Nanomaterials, 12(10), 1630. doi:10.3390/nano12101630
CrossrefPubMedPMCGoogle Scholar

Komkova, M. A., Andreev, E. A., Ibragimova, O. A., & Karyakin, A. A. (2019). Prussian blue based flow-through (bio)sensors in power generation mode: new horizons for electrochemical analyzers. Sensors and Actuators B: Chemical, 292, 284-288. doi:10.1016/j.snb.2019.04.134
CrossrefGoogle Scholar

Komkova, M. A., Karyakina, E. E., & Karyakin, A. A. (2018). Catalytically synthesized Prussian blue nanoparticles defeating natural enzyme peroxidase. Journal of the American Chemical Society, 140(36), 11302-11307. doi:10.1021/jacs.8b05223
CrossrefPubMedGoogle Scholar

Komkova, M. A., Pasquarelli, A., Andreev, E. A., Galushin, A. A., & Karyakin, A. A. (2020). Prussian blue modified boron-doped diamond interfaces for advanced H2O2 electrochemical sensors. Electrochimica Acta, 339, 135924. doi:10.1016/j.electacta.2020.135924
CrossrefGoogle Scholar

Kong, B., Tang, J., Selomulya, C., Li, W., Wei, J., Fang, Y., Wang, Y., Zheng, G., & Zhao, D. (2014). Oriented mesoporous nanopyramids as versatile plasmon-enhanced interfaces. Journal of the American Chemical Society, 136(19), 6822-6825. doi:10.1021/ja501517h
CrossrefPubMedGoogle Scholar

Li, D., Liu, M., Li, W., Fu, Q., Wang, L., Lai, E., Zhao, W., & Zhang, K. (2022). Synthesis of Prussian blue nanoparticles and their antibacterial, antiinflammation and antitumor applications. Pharmaceuticals, 15(7), 769. doi:10.3390/ph15070769
CrossrefPubMedPMCGoogle Scholar

Li, W. J., Han, C., Cheng, G., Chou, S., Liu, H., & Dou, S. (2019). Chemical properties, structural properties, and energy storage applications of Prussian blue analogues. Small, 15(32), 1900470. doi:10.1002/smll.201900470
CrossrefPubMedGoogle Scholar

Liu, S.-Q., Xu, J.-J., & Chen, H.-Y. (2002). Electrochemical behavior of nanosized Prussian blue self-assembled on Au electrode surface. Electrochemistry Communications, 4(5), 421-425. doi:10.1016/s1388-2481(02)00336-3
CrossrefGoogle Scholar

Ma, X., Hao, J., Wu, J., Li, Y., Cai, X., & Zheng, Y. (2022). Prussian blue nanozyme as a pyroptosis inhibitor alleviates neurodegeneration. Advanced Materials, 34(15), 2106723. doi:10.1002/adma.202106723
CrossrefPubMedGoogle Scholar

Matos-Peralta, Y., & Antuch, M. (2019). Prussian blue and its analogs as appealing materials for electrochemical sensing and biosensing. Journal of The Electrochemical Society, 167(3), 037510. doi:10.1149/2.0102003jes
CrossrefGoogle Scholar

Nagarwal, R. C., Kumar, R., Dhanawat, M., Das, N., & K. Pandit, J. (2011). Nanocrystal technology in the delivery of poorly soluble drugs: an overview. Current Drug Delivery, 8(4), 398-406. doi:10.2174/156720111795767988
CrossrefPubMedGoogle Scholar

Qian, J., Cai, S., Yang, S., & Hua, D. (2017). A thermo-sensitive polymer network crosslinked by Prussian blue nanocrystals for cesium adsorption from aqueous solution with large capacity. Journal of Materials Chemistry A, 5(42), 22380-22388. doi:10.1039/c7ta08025e
CrossrefGoogle Scholar

Qin, Z., Li, Y., & Gu, N. (2018). Progress in applications of Prussian blue nanoparticles in biomedicine. Advanced Healthcare Materials, 7(20), 1800347. doi:10.1002/adhm.201800347
CrossrefPubMedGoogle Scholar

Sahar, S., Zeb, A., Ling, C., Raja, A., Wang, G., Ullah, N., Lin, X.-M., & Xu, A.-W. (2020). A hybrid VOX incorporated hexacyanoferrate nanostructured hydrogel as a multienzyme mimetic via cascade reactions. ACS Nano, 14(3), 3017-3031. doi:10.1021/acsnano.9b07886
CrossrefPubMedGoogle Scholar

Sahu, A., Jeon, J., Lee, M. S., Yang, H. S., & Tae, G. (2021). Antioxidant and anti-inflammatory activities of Prussian blue nanozyme promotes full-thickness skin wound healing. Materials Science and Engineering: C, 119, 111596. doi:10.1016/j.msec.2020.111596
CrossrefPubMedGoogle Scholar

Shiba, F., Mameuda, U., Tatejima, S., & Okawa, Y. (2019). Synthesis of uniform Prussian blue nanoparticles by a polyol process using a polyethylene glycol aqueous solution. RSC Advances, 9(59), 34589-34594. doi:10.1039/c9ra07080j
CrossrefPubMedPMCGoogle Scholar

Shiba, F., Nito, M., Kawakita, K., & Okawa, Y. (2015). Size control of monodisperse Prussian blue nanoparticles by enforced-nucleation and additional-growth procedures in a citrate reduction system. Particulate Science and Technology, 33(6), 671-676. doi:10.1080/02726351.2015.1020181
CrossrefGoogle Scholar

Shokouhimehr, M., Soehnlen, E. S., Khitrin, A., Basu, S., & Huang, S. D. (2010). Biocompatible Prussian blue nanoparticles: preparation, stability, cytotoxicity, and potential use as an MRI contrast agent. Inorganic Chemistry Communications, 13(1), 58-61. doi:10.1016/j.inoche.2009.10.015
CrossrefGoogle Scholar

Sitnikova, N. A., Borisova, A. V., Komkova, M. A., & Karyakin, A. A. (2011). Superstable advanced hydrogen peroxide transducer based on transition metal hexacyanoferrates. Analytical Chemistry, 83(6), 2359-2363. doi:10.1021/ac1033352
CrossrefPubMedGoogle Scholar

Stasyuk, N., Smutok, O., Demkiv, O., Prokopiv, T., Gayda, G., Nisnevitch, M., & Gonchar, M. (2020). Synthesis, catalytic properties and application in biosensorics of nanozymes and electronanocatalysts: a review. Sensors, 20(16), 4509. doi:10.3390/s20164509
CrossrefPubMedPMCGoogle Scholar

Uemura, T., & Kitagawa, S. (2003). Prussian blue nanoparticles protected by poly(vinylpyrrolidone). Journal of the American Chemical Society, 125(26), 7814-7815. doi:10.1021/ja0356582
CrossrefPubMedGoogle Scholar

Vázquez-González, M., Torrente-Rodríguez, R. M., Kozell, A., Liao, W.-C., Cecconello, A., Campuzano, S., Pingarrón, J. M., & Willner, I. (2017). Mimicking peroxidase activities with Prussian blue nanoparticles and their cyanometalate structural analogues. Nano Letters, 17(8), 4958-4963. doi:10.1021/acs.nanolett.7b02102
CrossrefPubMedGoogle Scholar

Vincent, T., Taulemesse, J.-M., Dauvergne, A., Chanut, T., Testa, F., & Guibal, E. (2014). Thallium(I) sorption using Prussian blue immobilized in alginate capsules. Carbohydrate Polymers, 99, 517-526. doi:10.1016/j.carbpol.2013.08.076
CrossrefPubMedGoogle Scholar

Wang, Y., Liang, Z., Liang, Z., Lv, W., Chen, M., & Zhao, Y. (2022). Advancements of Prussian blue-based nanoplatforms in biomedical fields: progress and perspectives. Journal of Controlled Release, 351, 752-778. doi:10.1016/j.jconrel.2022.10.007
CrossrefPubMedGoogle Scholar

Wang, C., Wang, M., Zhang, W., Liu, J., Lu, M., Li, K., & Lin, Y. (2019). Integrating Prussian blue analog-based nanozyme and online visible light absorption approach for continuous hydrogen sulfide monitoring in brains of living rats. Analytical Chemistry, 92(1), 662-667. doi:10.1021/acs.analchem.9b04931
CrossrefPubMedGoogle Scholar

Wang, D., Shi, R., Zhou, J., Shi, S., Wu, H., Xu, P., Wang, H., Xia, G., Barnhart, T. E., Cai, W., Guo, Z., & Chen, Q. (2018). Photo-enhanced singlet oxygen generation of Prussian blue-based nanocatalyst for augmented photodynamic therapy. iScience, 9, 14-26. doi:10.1016/j.isci.2018.10.005
CrossrefPubMedPMCGoogle Scholar

Wang, H., Wan, K., & Shi, X. (2018). Recent advances in nanozyme research. Advanced Materials, 31(45), 1805368. doi: 10.1002/adma.201805368
CrossrefPubMedGoogle Scholar

Wang, S.-J., Chen, C.-S., & Chen, L.-C. (2013). Prussian blue nanoparticles as nanocargoes for delivering DNA drugs to cancer cells. Science and Technology of Advanced Materials, 14(4), 044405. doi:10.1088/1468-6996/14/4/044405
CrossrefPubMedPMCGoogle Scholar

Wang, Z., Long, Y., Fan, J., Xiao, C., Tong, C., Guo, C., Chen, X., Liu, B., & Yang, X. (2020). Biosafety and biocompatibility assessment of Prussian blue nanoparticles in vitro and in vivo. Nanomedicine, 15(27), 2655-2670. doi:10.2217/nnm-2020-0191
CrossrefPubMedGoogle Scholar

Wu, M., Wang, Q., Liu, X., & Liu, J. (2015). Highly efficient loading of doxorubicin in Prussian blue nanocages for combined photothermal/chemotherapy against hepatocellular carcinoma. RSC Advances, 5(39), 30970-30980. doi:10.1039/c4ra16138f
CrossrefGoogle Scholar

Xu, Y., Zhang, Y., Cai, X., Gao, W., Tang, X., Chen, Y., Chen, J., Chen, L., Tian, Q., Yang, S., Zheng, Y., & Hu, B. (2018). Large-scale synthesis of monodisperse Prussian blue nanoparticles for cancer theranostics via an "in situ modification" strategy. International Journal of Nanomedicine, 4, 271-288. doi:10.2147/ijn.s183858
CrossrefPubMedPMCGoogle Scholar

Yang, W., Hao, J., Zhang, Z., & Zhang, B. (2015). PB@Co3O4 nanoparticles as both oxidase and peroxidase mimics and their application for colorimetric detection of glutathione. New Journal of Chemistry, 39(11), 8802-8806. doi:10.1039/c5nj01744k
CrossrefGoogle Scholar

Zhang, C., Xu, Y., Zhou, M., Liang, L., Dong, H., Wu, M., Yang, Y., & Lei, Y. (2016). Potassium Prussian blue nanoparticles: a low-cost cathode material for potassium-ion batteries. Advanced Functional Materials, 27(4), 1604307. doi:10.1002/adfm.201604307
CrossrefGoogle Scholar

Zhang, W., Hu, S., Yin, J.-J., He, W., Lu, W., Ma, M., Gu, N., & Zhang, Y. (2016). Prussian blue nanoparticles as multienzyme mimetics and reactive oxygen species scavengers. Journal of the American Chemical Society, 138(18), 5860-5865. doi:10.1021/jacs.5b12070
CrossrefPubMedGoogle Scholar

Zhang, W., Ma, D., & Du, J. (2014). Prussian blue nanoparticles as peroxidase mimetics for sensitive colorimetric detection of hydrogen peroxide and glucose. Talanta, 120, 362-367. doi:10.1016/j.talanta.2013.12.028
CrossrefPubMedGoogle Scholar

Zhang, W., Zhang, Y., Chen, Y., Li, S., Gu, N., Hu, S., Sun, Y., Chen, X., & Li, Q. (2013). Prussian blue modified ferritin as peroxidase mimetics and its applications in biological detection. Journal of Nanoscience and Nanotechnology, 13(1), 60-67. doi:10.1166/jnn.2013.6871
CrossrefPubMedGoogle Scholar

Zhang, X.-Q., Gong, S.-W., Zhang, Y., Yang, T., Wang, C.-Y., & Gu, N. (2010). Prussian blue modified iron oxide magnetic nanoparticles and their high peroxidase-like activity. Journal of Materials Chemistry, 20(24), 5110-5116. doi:10.1039/c0jm00174k
CrossrefGoogle Scholar

Zhang, X.-Z., Zhou, Y., Zhang, W., Zhang, Y., & Gu, N. (2016). Polystyrene@Au@prussian blue nanocomposites with enzyme-like activity and their application in glucose detection. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 490, 291-299. doi:10.1016/j.colsurfa.2015.11.035
CrossrefGoogle Scholar

Zheng, X.-J., Kuang, Q., Xu, T., Jiang, Z.-Y., Zhang, S.-H., Xie, Z.-X., Huang, R.-B., & Zheng, L.-S. (2007). Growth of Prussian blue microcubes under a hydrothermal condition: possible nonclassical crystallization by a mesoscale self-assembly. The Journal of Physical Chemistry C, 111(12), 4499-4502. doi:10.1021/jp065055n
CrossrefGoogle Scholar


Refbacks

  • There are currently no refbacks.


Copyright (c) 2023 O. M. Demkiv, N. Ye. Stasyuk, G. Z. Gayda, А. E. Zakalskiy, N. M. Grynchyshyn, М. R. Hrytsyna, O. T. Novikevuch, M. L. Zastryzhna, O. V. Semiion-Luchyshyn, M. V. Gonchar

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.