NATURAL POLYPHENOLIC COMPLEX OF GRAPE WINE SHOWS PROTECTIVE EFFECT ON RADIOINDUCED NITRATIVE STRESS IN RAT AORTA

M. Sabadashka, N. Sybirna


DOI: http://dx.doi.org/10.30970/sbi.0802.355

Abstract


We investigated L-arginine/NO system, whose key molecule is nitric oxide gene­rated in the NO-synthase reaction. Nitric oxide is an important signaling molecule in a wide range of physiological responses including vasodilatation and regulation of vascular tone. We determined NO-synthase activity, the total content of NO stable metabolites (nitrite- and nitrate-anions) and the content of 3′-nitrotyrosine-modified proteins in rats’ aorta under irradiation in a dose 30 cGy with and without consumption of concentrate of natural grape wine polyphenolic complex. It was shown that the content of 3′-nitrotyrosine-modified proteins decreased in 24 and in 72 hrs after irradiation, when the NO-synthase activity and the contents of nitrite and nitrate increased in 72 and in 168 hrs compared to control. This effect is leveled by the per os introduction of concentrate of natural polyphenolic complex of grape wine. Investigated concentrate caused a decrea­se of all studied parameters. Thus, we firstly analyzed the development of nitrative stress in rats’ aortic tissues caused by the action of radiation in a dose close to the natural background radiation. The ability of grape wine polyphenols to adjust the radioinduced nitrative stress was experimentally demonstrated.


Keywords


low doses of radiation, concentrate of wine polyphenolic complex, nitric oxide, NO-synthase, 3′-nitrotyrosine-modified proteins

References


1. Alhosin M., Anselm E., Rashid S. et al. Redox-Sensitive Up-Regulation of eNOS by Purple Grape Juice in Endothelial Cells: Role of PI3-Kinase/Akt, p38 MAPK, JNK, FoxO1 and FoxO3a. PLOS ONE, 2013; 8(3): e57883.
https://doi.org/10.1371/journal.pone.0057883
PMid:23533577 PMCid:PMC3606366

2. Babicova A., Havlinova Z., Pejchal J. et al. Early changes in L-arginine-nitric oxide metabolic pathways in response to the whole-body gamma irradiation of rats. International Journal of Radiation Biology, 2011; 87(10): 1067-1073.
https://doi.org/10.3109/09553002.2011.595873
PMid:21756062

3. Beckman J.S., Koppenol W.H. Nitric oxide, superoxide, and peroxinitrite: the good, the bad, and the ugly. Am. J. Physiol. Cell Phisiol, 1996. 271: C1424-C1437.
https://doi.org/10.1152/ajpcell.1996.271.5.C1424
PMid:8944624

4. Boger R.H. The pharmacodynamics of L-arginine. J. Nutr, 2007; 137: 1650-1655.
https://doi.org/10.1093/jn/137.6.1650S
PMid:17513442

5. Das S., Santani D.D., Dhalla N.S. Experimental evidence for the cardioprotective effects of red wine. Exp. Clin. Cardiol, 2007; 12(1): 5-10.

6. Dawson J., Knowles R.G. A Microtiter-Plate Assay of Human NOS Isoforms. Methods in Molecular Biology, 1998; 100: 237-242.
https://doi.org/10.1385/1-59259-749-1:237

7. Dede S., Deger Y., Kahraman T., Kilicalp D. Effects of X-Ray Radiation on Oxidation Products of Nitric Oxide in Rabbits Treated with Antioxidant Compounds. Turk. J. Biochem, 2009; 34(1): 15-18.

8. Dohadwala M.M., Vita J.A. Grapes and Cardiovascular Disease. American Society for Nutrition. Supplement: Grapes and Health, 2009: 1788S-1793S.
https://doi.org/10.3945/jn.109.107474
PMid:19625699 PMCid:PMC2728695

9. Dudzinski D.M., Igarashi J., Greif D., Michel T. The regulation and pharmacology of endothelial nitric oxide synthase. Annu. Rev. Pharmacol. Toxicol, 2006; 46: 235-76.
https://doi.org/10.1146/annurev.pharmtox.44.101802.121844
PMid:16402905

10. Ermakova О.V. Modern aspects of radiobiological safety. Collection of scientific papers: Ed. by Afonin A.A. Bryansk: Publisher "Italic", 2011: 67-176. (In Russian)

11. Förstermann U. Nitric oxide and oxidative stress in vascular disease. Pflugers Arch, 2010; 459(6):923-939.
https://doi.org/10.1007/s00424-010-0808-2
PMid:20306272

12. Guilford J.M., Pezzuto J.M. Wine and Health: A Review. Am. J. Enol. Vitic, 2011; 62:4: 471-486.
https://doi.org/10.5344/ajev.2011.11013

13. Habauzit V., Morand C. Evidence for a protective effect of polyphenols-containing foods on cardiovascular health: an update for clinicians. Ther. Adv. Chronic Dis, 2012; 3(2): 87-106.
https://doi.org/10.1177/2040622311430006
PMid:23251771 PMCid:PMC3513903

14. Herrero P., Laforest R., Shoghi K. et al. Feasibility and Dosimetry Studies for 18F-NOS as a Potential PET Radiopharmaceutical for Inducible Nitric Oxide Synthase in Humans. J. Nucl. Med, 2012; 53: 994-1001.
https://doi.org/10.2967/jnumed.111.088518
PMid:22582045

15. Hess D.T., Matsumoto A., Kim S.O. et al. Protein S-nitrosylation: purview and parameters. Nat. Rev. Mol. Cell Biol, 2005; 6(2): 150-166.
https://doi.org/10.1038/nrm1569
PMid:15688001

16. Kagota S., Tada Y., Nejime N. et al. Chronic Production of Peroxynitrite in the Vascular Wall Impairs Vasorelaxation Function in SHR/NDmcr-cp Rats, an Animal Model of Metabolic Syndrome. J. Pharmacol. Sci, 2009; 109: 556-564.
https://doi.org/10.1254/jphs.08273FP
PMid:19346675

17. Kamisaki Y., Wada K., Bian K. et al. An activity in rat tissues that modifies nitrotyrosine-containing proteins. Proc. Natl. Acad. Sci. USA, 1998; 95(20): 11584-11589.
https://doi.org/10.1073/pnas.95.20.11584
PMid:9751709 PMCid:PMC21684

18. Kondrashov A., Vrankova S., Dovinova I. et al. The Effects of New Alibernet Red Wine Extract on Nitric Oxide and Reactive Oxygen Species Production in Spontaneously Hypertensive Rats. Oxidative Medicine and Cellular Longevity, 2012; 2012, Article ID 806285: 8 p.
https://doi.org/10.1155/2012/806285
PMid:22720118 PMCid:PMC3375118

19. Kulcitki V., Vlad P. F., Duca Gh., Lupascu T. Investigation of Grape Seed Proanthocyanidins. Achievements and Perspectives. Chem. J. of Moldova. General, Industrial and Ecological Chem, 2007; 2(1): 36-50.

20. Li H., Cui H., Kundu T.K. et al. Nitric Oxide Production from Nitrite Occurs Primarily in Tissues Not in the Blood. Critical Role of Xanthine Oxidase and Aldehyde Oxidase. The Journal of Biological Chemistry, 2008; 283(26): 17855-17863.
https://doi.org/10.1074/jbc.M801785200
PMid:18424432 PMCid:PMC2440597

21. Lowri O.H., Rosenbraugh M.J., Pori A.L. Protein measurement with the Folin phenol reagent. Biol. Chem, 1951; 193(1): 265-275.

22. Lundberg J.O., Carlstro M., Larsen F.J., Weitzberg E. Roles of dietary inorganic nitrate in cardiovascular health and disease. Cardiovascular Research, 2011; 89: 525-532.
https://doi.org/10.1093/cvr/cvq325
PMid:20937740

23. Meskin M.S., Bidlack W.R., Davies A.J. et al. Phytochemicals mechanisms of action. Florida. CRC Press LLC, 2004. 206 pp.
https://doi.org/10.1201/9780203506332

24. Miranda K.M., Espey M.G., Wink D.A. A Rapid, Simple Spectrophotometric Method for Simultaneous Detection of Nitrate and Nitrite. Nitric. Oxide: Biol. and Chem, 2001; 5(1): 62-71.
https://doi.org/10.1006/niox.2000.0319
PMid:11178938

25. Moibenko A.A., Sagach V.F., Tkachenko М.N. et al. Study into Basic Mechanisms of the Effect of Nitric Oxide on Cardiovascular System as a Basis for Pathogenetic Treatment of Related Diseases. Phisiol. J, 2004; 50(1): 11-30. (In Ukrainian)

26. Monteneiro H.P., Arai R.J., Travassos L. Protein Tyrosine Phosphorylation and Protein Tyrosine Nitration in Redox Signaling. Antioxid. Redox Signal, 2008; 10: 843-890.
https://doi.org/10.1089/ars.2007.1853
PMid:18220476

27. Mughal S.K., Myazin A.E., Zhavoronkov L.P. et al. The Dose and Dose-Rate Effects of Paternal Irradiation on Transgenerational Instability in Mice: A Radiotherapy Connection. PLoS ONE, 2012; 7(7): e41300.
https://doi.org/10.1371/journal.pone.0041300
PMid:22911775 PMCid:PMC3404076

28. Pacher P., Beckman J.S., Liaudet L. Nitric Oxide and Peroxynitrite in Health and Disease. Physiol. Rev, 2007; 87(1): 315-424.
https://doi.org/10.1152/physrev.00029.2006
PMid:17237348 PMCid:PMC2248324

29. Park J.H., Lee S., Cho D.H. et al. Far-infrared radiation acutely increases nitric oxide production by increasing Ca(2+) mobilization and Ca(2+)/calmodulin-dependent protein kinase II-mediated phosphorylation of endothelial nitric oxide synthase at serine 1179. Biochem. Biophys. Res. Commun, 2013; 436(4): 601-606.
https://doi.org/10.1016/j.bbrc.2013.06.003
PMid:23756809

30. Rao B.S.S., Shanbhoge R., Upadhya D. et al. Antioxidant, anticlastogenic and radioprotective effect of Coleus aromaticus on Chinese hamster fibroblast cells (V79) exposed to gamma radiation. Mutagenesis, 2006; 21(4): 237-242.
https://doi.org/10.1093/mutage/gel023
PMid:16735450

31. Rao B.S.S., Shanbhoge R., Upadhya D. et al. Vanguards of Paradigm Shift in Radiation Biology: Radiation-Induced Adaptive and Bystander Responses. J. Radiat. Res, 2007; 48: 97-106.
https://doi.org/10.1269/jrr.06090
PMid:17327685

32. Rattmann Y.D., Anselm E., Kim J.-H. et al. Natural Product Extract of Dicksonia sellowiana Induces Endothelium-Dependent Relaxations by a Redox-Sensitive Src- and Akt-Dependent Activation of eNOS in Porcine Coronary Arteries. J. Vasc. Res, 2012; 49: 284-298.
https://doi.org/10.1159/000336647
PMid:22538863

33. Singleton V.L., Orthofer R., Lamuela-Raventуs R.M. Analysis of total phenols and other oxidation substrates and antioxidants by means of Folin-Ciocalteu reagent. Methods in Enzymology,1999; 299: 152-178.
https://doi.org/10.1016/S0076-6879(99)99017-1

34. Souza J.M., Choi I., Chen Q. et al. Proteolytic degradation of tyrosine nitrated proteins. Arch. Biochem. Biophys, 2000; 380(2): 360-366.
https://doi.org/10.1006/abbi.2000.1940
PMid:10933892

35. Sutherland B.A., Rahman R.M.A., Appleton I. Mechanisms of action of green tea catechins, with a focus on ischemia-induced neurodegeneration. J. of Nutritional Biochemistry, 2006; 17: 291-306.
https://doi.org/10.1016/j.jnutbio.2005.10.005
PMid:16443357

36. Szabo C., Ischiropoulos H., Radi R. Peroxynitrite: biochemistry, pathophysiology and development of therapeutics. Nature Reviews. Drug Discovery, 2007; 6: 662-680.
https://doi.org/10.1038/nrd2222
PMid:17667957

37. Towbin H., Staehelin T., Gordon J. Electrophoretic transfer of proteins from polyacrylamide gels to nitrocellulose sheets: procedure andsome applications.1979. Biotechnology, 1992; 24: 145-149.

38. Van Golde P.H., Van der Westelakenb M., Boumac B.N., Van de Wiela A. Characteristics of piraltin, a polyphenol concentrate, produced by freeze-drying of red wine. Life Sciences, 2004; 74: 1159-1166.
https://doi.org/10.1016/j.lfs.2003.07.029
PMid:14687656

39. Wallace T.C. Anthocyanins in Cardiovascular Disease. Adv. Nutr, 2011; 2: 1-7.
https://doi.org/10.3945/an.110.000042
PMid:22211184 PMCid:PMC3042791

40. Yeo W.-S., Lee S.J., Lee J.R., Kim K.P. Nitrosative protein tyrosine modifications: biochemistry and functional significance. BMB Reports, 2008: 194-203.
https://doi.org/10.5483/BMBRep.2008.41.3.194
PMid:18377722


Refbacks

  • There are currently no refbacks.


Copyright (c) 2014 Studia biologica

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.