BIOCHEMICAL AND HISTOLOGIC CHANGES IN ALBINO RATS IN RESPONSE TO CHARCOAL POWDER EXPOSURE

O E. Oriakpono, C. Anuforo, E. E. Nduonofit, B. K. Deeyah, M. C. Ekeke


DOI: http://dx.doi.org/10.30970/sbi.1504.661

Abstract


Background. In developing and under-developed countries, charcoal production predisposes workers to charcoal dust. This is a common occurrence as workers in this field are not properly protected and as such are exposed to charcoal dust through inhalation and skin contact. Charcoal comprises many components such as polycyclic aromatic hydrocarbons (PAHs). Due to the possible health risk associated with such exposure, this study was designed to determine the effects of charcoal powder of particle size 125 µm - 150 µm on certain biomarkers in male albino rats. Albino rats were used because of their similar physiology to humans.
Materials and Methods. 20 albino rats weighing between 250 g and 300 g were used for this study; they were randomly distributed in 4 groups (5 rats each) and the charcoal powder was incorporated into their feed at different percentages; control, group 1 (10 % charcoal), group 2 (30 % charcoal) and group 3 (charcoal powder bedding) for 50 days. Using standard procedures and methods, the following parameters were tested: Hematological parameters, semen parameters, liver enzymes, renal function, hormones and lung histology.
Results. The results indicated a decrease in the level of liver enzymes AST (IU/L) and ALT (IU/L) in group 1, group 2 and group 3 when compared to the control with the lowest value of 48.75 IU/L and 11.50 IU/L respectively recorded in group 2. Prolactin (mIU/L) had mean values of 1.73, 1.30 and 1.83 in group 1, group 2 and group 3 respectively while the control was 2.10. Testosterone (nmol/L) had a mean value of 1.18, 0.53 and 0.25 in group 1, group 2 and group 3, respectively, while the control was 0.90 with a significant difference (P<0.05). Creatinine (µmol/L) increased in group 1 and group 2 with a slight reduction in group 3 when compared to control (1.04) with a value of 1.35, 1.40 and 1.23, respectively. Total sperm count (´105/mL) had a mean value of 58.33, 50.00 and 43.25 in group 1, group 2 and group 3, respectively, while the control was 100.50. The lung histology for the treated groups revealed infiltration of inflammatory cells and thickening of inter-alveolar walls.
Conclusion. Long term exposure to charcoal powder through nasal or oral route had serious effects on rats’ health, such as kidney damages, inflammation of the lungs and decrease in fertility in males primarily due to the presence of PAHs in charcoal.


Keywords


charcoal, hormones, infertility, lung inflammation, polyaromatic hydrocarbon

Full Text:

PDF

References


Abdel-Shafy, H. I., & Mansour, M. S. M. (2016). A review on polycyclic aromatic hydrocarbons: Source, environmental impact, effect on human health and remediation. Egyptian Journal of Petroleum, 25(1), 107-123. doi:10.1016/j.ejpe.2015.03.011
CrossrefGoogle Scholar

Agency for Toxic Substances and Disease Registry (ATSDR), (1995). Toxicological profile for polycyclic aromatic hydrocarbons (PAHs). Atlanta, GA: U.S. Department of Health and Human Services, Public Health Service.

Asadi, N., Bahmani, M., Kheradmand, A., & Rafieian-Kopaei, M. (2017). The impact of oxidative stress on testicular function and the role of antioxidants in improving it: A review. Journal of Clinical and Diagnostic Research, 11(5), IE01-IE05. doi:10.7860/jcdr/2017/23927.9886
CrossrefPubMedPMCGoogle Scholar

Baird, W. M., Hooven, L. A., & Mahadevan, B. (2005). Carcinogenic polycyclic aromatic hydrocarbon-DNA adducts and mechanism of action. Environmental and Molecular Mutagenesis, 45(2-3), 106-114. doi:10.1002/em.20095
CrossrefPubMedGoogle Scholar

Cindy, K. (2016). Health effects of low testosterone.
Available at: https://www.google.com.ng/amp/s/www.menshealth.com/health/amp19533454/effects-of-low-testosterone/

Diaz, J. V., Koff, J., Gotway, M. B., Nishimura, S., & Balmes, J. R. (2006). Case report: a case of wood-smoke - related pulmonary disease. Environmental Health Perspectives, 114(5), 759-762. doi:10.1289/ehp.8489
CrossrefPubMedPMCGoogle Scholar

Eileen, D. K., Matthew, W. W., Randall, J. S., Van, V., & Francis, H. Y. G. (2009). Contributions of dust exposure and cigarette smoking to emphysema severity in coal miners in the United States. American Journal of Respiratory and Critical Care Medicine, 180(3), 257-264. doi:10.1164/rccm.200806-840oc
CrossrefPubMedGoogle Scholar

Electron Microscopy Sciences (EMS), (2021). Neubauer Haemocytometry.
Retrieved on 29 August, 2021 from https://www.emsdiasum.com/microscopy/technical/datasheet/68052-14.aspx

Farzan, S. F., Chen, Y., Trachtman, H., & Trasande, L. (2016). Urinary polycyclic aromatic hydrocarbons and measures of oxidative stress, inflammation and renal function in adolescents: NHANES 2003-2008. Environmental Research, 144, 149-157. doi:10.1016/j.envres.2015.11.012
CrossrefPubMedPMCGoogle Scholar

Gao, J., & Burchiel, S. W. (2014). Genotoxic mechanisms of PAH-induced immunotoxicity. Molecular Immunotoxicology, 245-262. doi:10.1002/9783527676965.ch12
CrossrefGoogle Scholar

Han, X., Zhou, N., Cui, Z., Ma, M., Li, L., Cai, M., Li, Y., Lin, H., Ao, L., Liu, J., & Cao, J. (2011). Association between urinary polycyclic aromatic hydrocarbon metabolites and sperm DNA damage: A population study in Chongqing, China. Environmental Health Perspectives, 119(5), 652-657. doi:10.1289/ehp.1002340
CrossrefPubMedPMCGoogle Scholar

Hsu, P. C., Chen, I. Y., Pan, C. H., Wu, K. Y., Pan, M. H., & Chen, J. R. (2006). Sperm DNA damage correlates with polycyclic aromatic hydrocarbons biomarker in coke-oven workers. International Archives of Occupational and Environmental Health, 79(5), 349-356. doi:10.1007/s00420-005-0066-3
CrossrefPubMedGoogle Scholar

Jeffcoate, S. L., Bacon, R. R. A., Beastall, G. H., Diver, M. J., Franks, S., & Seth, J. (1986). Assay for prolactin: Guidelines for the provision of a clinical biochemistry service. Annals of Clinical Biochemistry: International Journal of Laboratory Medicine, 23(6), 638-651. doi:10.1177/000456328602300603
CrossrefPubMedGoogle Scholar

Jeng, H. A., & Yu, L. (2008). Alteration of sperm quality and hormone levels by polycyclic aromatic hydrocarbons on airborne particulate particles. Journal of Environmental Science and Health, Part A, 43(7), 675-681. doi:10.1080/10934520801959815
CrossrefGoogle Scholar

Khairy, M. A., Kolb, M., Mostafa, A. R., EL-Fiky, A., & Bahadir, M. (2009). Risk assessment of polycyclic aromatic hydrocarbons in a Mediterranean semi-enclosed basin affected by human activities (Abu Qir Bay, Egypt). Journal of Hazardous Materials, 170(1), 389-397. doi:10.1016/j.jhazmat.2009.04.084
CrossrefPubMedGoogle Scholar

Kim, K.-H., Jahan, S. A., Kabir, E., & Brown, R. J. C. (2013). A review of airborne polycyclic aromatic hydrocarbons (PAHs) and their human health effects. Environment International, 60, 71-80. doi:10.1016/j.envint.2013.07.019
CrossrefPubMedGoogle Scholar

Kolhatkar, A., Ochei, J., & McGraw, T. (2008) Medical Laboratory Science: Theory and Practice, Tata Mcgraw Hill, New York, NY, USA.
Google Scholar

Larson, T. V., & Koenig, J. Q. (1994). Wood smoke: emissions and non-cancer respiratory effects. Annual Review of Public Health, 15(1), 133-156. doi:10.1146/annurev.pu.15.050194.001025
CrossrefPubMedGoogle Scholar

Mamuya, S. H., Bråtveit, M., Mashalla, Y., & Moen, B. E. (2007). High prevalence of respiratory symptoms among workers in the development section of a manually operated coal mine in a developing country: A cross sectional study. BMC Public Health, 7(1). doi:10.1186/1471-2458-7-17
CrossrefPubMedPMCGoogle Scholar

Monzer, B., Sepetdjian, E., Saliba, N., & Shihadeh, A. (2008). Charcoal emissions as a source of CO and carcinogenic PAH in mainstream narghile waterpipe smoke. Food and Chemical Toxicology, 46(9), 2991-2995. doi:10.1016/j.fct.2008.05.031
CrossrefPubMedGoogle Scholar

Morton, J., & Snider, T. A. (2017). Guidelines for collection and processing of lungs from aged mice for histological studies. Pathobiology of Aging & Age-Related Diseases, 7(1), 1313676. doi:10.1080/20010001.2017.1313676
CrossrefPubMedPMCGoogle Scholar

Ramesh, A., Inyang, F., Lunstra, D. D., Niaz, M. S., Kopsombut, P., Jones, K. M., Hood, D. B., Hills, E. R., & Archibong, A. E. (2008). Alteration of fertility endpoints in adult male F-344 rats by subchronic exposure to inhaled benzo(a)pyrene. Experimental and Toxicologic Pathology, 60(4-5), 269-280. doi:10.1016/j.etp.2008.02.010
CrossrefPubMedPMCGoogle Scholar

Ramos, K. S., & Moorthy, B. (2005). Bioactivation of polycyclic aromatic hydrocarbon carcinogens within the vascular wall: implications for human atherogenesis. Drug Metabolism Reviews, 37(4), 595-610. doi:10.1080/03602530500251253
CrossrefPubMedGoogle Scholar

Reitman, S., & Frankel, S. (1957). A colorimetric method for the determination of serum glutamic oxalacetic and glutamic pyruvic transaminases. American Journal of Clinical Pathology, 28(1), 56-63. doi:10.1093/ajcp/28.1.56
CrossrefPubMedGoogle Scholar

Rengarajan, T., Rajendran, P., Nandakumar, N., Lokeshkumar, B., Rajendran, P., & Nishigaki, I. (2015). Exposure to polycyclic aromatic hydrocarbons with special focus on cancer. Asian Pacific Journal of Tropical Biomedicine, 5(3), 182-189. doi:10.1016/s2221-1691(15)30003-4
CrossrefGoogle Scholar

Sette, L., & Lopes, E. (2015). The reduction of serum aminotransferase levels is proportional to the decline of the glomerular filtration rate in patients with chronic kidney disease. Clinics, 70(5), 346-349. doi:10.6061/clinics/2015(05)07
CrossrefGoogle Scholar

Silva, B. O., Adetunde, O. T., Oluseyi, T. O., Olayinka, K. O., & Alo, B. I. (2011). Effects of the methods of smoking on the levels of polycyclic aromatic hydrocarbons (PAHs) in some locally consumed fishes in Nigeria. African Journal of Food Science, 5(7), 384-391.
Google Scholar

Tzanakis, N., Kallergis, K., Bouros, D. E., Samiou, M. F., & Siafakas, N. M. (2001). Short-term effects of wood smoke exposure on the respiratory system among charcoal production workers. Chest, 119(4), 1260-1265. doi:10.1378/chest.119.4.1260
CrossrefPubMedGoogle Scholar

Ubogu, M., & Odokuma, L. O. (2019). Growth and tolerance evaluation of selected plants to crude oil contamination in the Niger Delta. Kuwait Journal of Science, 46(4), 93-103.
Google Scholar

United States Environmental Protection Agency (USEPA), (1984). Carcinogen assessment of coke oven emissions, the United States Environmental Protection Agency, Washington, D.C.
Google Scholar

Xia, Y., Zhu, P., Han, Y., Lu, C., Wang, S., Gu, A., Fu, G., Zhao, R., Song, L., & Wang, X. (2009).Urinary metabolites of polycyclic aromatic hydrocarbons in relation to idiopathic male infertility. Human Reproduction, 24(5), 1067-1074. doi:10.1093/humrep/dep006
CrossrefPubMedGoogle Scholar

Zaneveld, L. J., & Polakoski, K. L. (1977). Collection and physical examination of the ejaculate. In: E. S. Hafez (Ed.), Techniques of human andrology (pp. 147-156). North Holland Biomedical Press, Armsterdam.
Google Scholar


Refbacks

  • There are currently no refbacks.


Copyright (c) 2021 O E. Oriakpono, C. Anuforo, E. E. Nduonofit, B. K. Deeyah, M. C. Ekeke

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.