THE IMPACT OF WATER-SOLUBLE  C60 FULLERENES ON THE DEVELOPMENT OF ACUTE COLITIS IN RATS

H. M. Kuznietsova, N. V. Dziubenko, I. O. Chereschuk, T. V. Rybalchenko


DOI: http://dx.doi.org/10.30970/sbi.1101.509

Abstract


Anti-inflammatory drugs are traditionally applied for the treatment of acute colitis of various etiologies. However, they have several disadvantages due to intestinal and extraintestinal complications and lowefficiency. Therefore, a search for new agents which would be effective at colonic inflammation is relevant. Potential anti-inflammatory and protective properties of the water-soluble C60 fullerenes on rat acute ulcerative colitis model were assessed. Acute colitis was induced by rectal administration of 0.5 ml of 10% acetic acid solution. C60 fullerenes (0.5 mg/kg body weight) in the stable aqueous solution were administered intraperitoneally or rectally at 24 and 48 h after the colitis induction. Animals were euthanized at 24 h after the last administration. State of the colon was evaluated macroscopically by 10-grade scale, and the colon epithelial barrier permeability was assessed for diurnal phenol red excretion. The levels of serum blood transaminases, creatinine and urea were also measured for liver and kidney state assessment. Colonic lesions were reduced in some animals (3 of total number of 6) by C60 fullerenes administered intraperitoneally. Moreover, mucosal dama­ge was significantly weaker in all animals under C60 fullerenes rectal administration (3 grades vs 5). C60 fullerenes applied by both methods partially corrected local and systemic changes: colon mucosa epithelial barrier and kidney and liver functions were restored. Thus, C60 fullerenes correct local and systemic consequences of the acute colitis. The protective effects of C60 fullerenes are more pronounced at topical administration compared with the intraperitoneal one.


Keywords


acute colitis, treatment, C60 fullerenes

References


1. Ambruzs J.M., Walker P.D., Larsen C.P. The histopathologic spectrum of kidney biopsies in patients with inflammatory bowel disease. Clin. J. Am. Soc. Nephrol, 2014; 9(2): 265-270.
https://doi.org/10.2215/CJN.04660513
PMid:24262508 PMCid:PMC3913236

2. Bamba S., Tsujikawa T., Sasaki M. et al. Immunomodulators and immunosuppressants for Japanese patients with ulcerative colitis. ISRN Gastroenterol, 2011; 2011: 194324.
https://doi.org/10.5402/2011/194324
PMid:21991497 PMCid:PMC3168385

3. Boyko T.I. Extraintestinal manifestations of inflammatory bowel disease. News of Medicine and Pharmacy, 2010; 18(341). (In Russian)

4. Cottone M., Renna S., Modesto I., Orlando A. Is 5-ASA still the treatment of choice for ulcerative colitis? Curr. Drug Targets, 2011; 12(10): 1396-1405.
https://doi.org/10.2174/138945011796818126

5. Dresselhaus M.S., Dresselhaus G., Eklund P.C. Science of Fullerenes and Carbon Nanotubes: Their Properties and Applications. New York: Academic Press, 1996, 985 p.
https://doi.org/10.1016/B978-012221820-0/50013-7

6. Feuerstein J.D., Cheifetz A.S. Ulcerative colitis: epidemiology, diagnosis, and management. Mayo. Clin. Proc, 2014; 89(11): 1553-1563.
https://doi.org/10.1016/j.mayocp.2014.07.002
PMid:25199861

7. Fitzpatrick L.R., Bostwick J.S., Renzetti M. Antiinflammatory effects of various drugs on acetic acid induced colitis in the rat. Agents Actions, 1990; 30: 393-403.
https://doi.org/10.1007/BF01966304
PMid:1974733

8. Gloire G., Legrand-Poels S., Piette J. NF-kappaB activation by reactive oxygen species: fifteen years later. Biochem. Pharmacol, 2006; 72(11): 1493-1505.
https://doi.org/10.1016/j.bcp.2006.04.011
PMid:16723122

9. Hada M., Omura K., Hirano Y., Watanabe G. Changes in bowel mucosal permeability and wound healing after neoadjuvant chemotherapy. Oncology Letters, 2010; 1: 161-165.
https://doi.org/10.3892/ol_00000030
PMid:22966276 PMCid:PMC3436444

10. Halenova T.I., Vareniuk I.M., Roslova N.M. et al. Hepatoprotective effect of orally applied water-soluble pristine C60 fullerene against CCl4-induced acute liver injury in rats. RSC Adv, 2016; 6(102): 100046-100055.
https://doi.org/10.1039/C6RA20291H

11. Kaser A., Zeissig S., Blumberg R. Inflammatory Bowel Disease. Annu Immunol, 2010; 28: 573-621.
https://doi.org/10.1146/annurev-immunol-030409-101225
PMid:20192811 PMCid:PMC4620040

12. Kolosnjaj J., Szwarc H., Moussa F. Toxicity studies of fullerenes and derivatives. Adv. Exp. Med. Biol, 2007; 620: 168-180.
https://doi.org/10.1007/978-0-387-76713-0_13
PMid:18217343

13. Lakatos P. Recent trends in the epidemiology of inflammatory bowel diseases: up or down? World J. Gastroenterol, 2006; 12(38): 6102-6108.
https://doi.org/10.3748/wjg.v12.i38.6102
PMid:17036379 PMCid:PMC4088101

14. Levine J.S., Burakoff R. Extraintestinal Manifestations of Inflammatory Bowel Disease. Gastroenterol. Hepatol. (N Y), 2011; 7(4): 235-241.

15. Low D., Nguyen D.D., Mizoguchi E. Animal models of ulcerative colitis and their application in drug research. Drug Des. Devel. Ther, 2013; 7: 1341-1357.
https://doi.org/10.2147/DDDT.S40107
PMid:24250223 PMCid:PMC3829622

16. Matsuda S., Matsui S., Shimizu Y., Matsuda T. Genotoxicity of colloidal fullerene С60. Environ. Sci. Technol, 2011; 1: 4133-8.
https://doi.org/10.1021/es1036942
PMid:21480588

17. Moura F.A., de Andrade K.Q., Farias dos Santos J.C. et. al. Antioxidant therapy for treatment of inflammatory bowel disease: Does it work? Redox Biol, 2015; 6: 617-639.
https://doi.org/10.1016/j.redox.2015.10.006
PMid:26520808 PMCid:PMC4637335

18. Nozdrenko D., Prylutskyy Yu., Ritter U., Scharff P. Protective effect of water-soluble pristine C60 fullerene in ischemia-reperfusion injury of skeletal muscle. Int. J. Physiol. Pathophysiol, 2014; 5(2): 97-110.
https://doi.org/10.1615/IntJPhysPathophys.v5.i2.10

19. Piotrovskyy L.B., Kiselyov O.I. Fullerenes in biology (on the way to nanomedicine). St. Petersbourg: Rostoc, 2006. 336 p. (In Russian)

20. Prylutska S., Bilyy R., Overchuk M. et al. Water-soluble pristine fullerenes C60 increase the specific conductivity and capacity of lipid model membrane and form the channels in cellular plasma membrane. J. Biomed. Nanotechnol, 2012; 8: 522-527.
https://doi.org/10.1166/jbn.2012.1404
PMid:22764423

21. Prylutska S.V., Burlaka A.P., Klymenko P.P. et al. Using water-soluble C60 fullerenes in anticancer therapy. Cancer Nanotechnol, 2011; 2(1): 105-110.
https://doi.org/10.1007/s12645-011-0020-x
PMid:26069489 PMCid:PMC4452036

22. Prylutska S.V., Grynyuk I.I., Grebinyk S.M. et al. Comparative study of biological action of fullerenes C60 and carbon nanotubes in thymus cells. Mat-wiss. u. Werkstofftech, 2009; 40(4): 238-241.
https://doi.org/10.1002/mawe.200900433

23. Prylutska S.V., Grynyuk I.I., Matyshevska O.P. et al. Anti-oxidant properties of C60 fullerenes in vitro. Fullerenes, Nanotubes, Carbon Nanostruct, 2008; 16(5-6): 698-705.
https://doi.org/10.1080/15363830802317148

24. Prylutska S.V., Matyshevska O.P., Prylutskyy Yu.I. et al. Biological effects of C60 fullerenes in vitro and in a model system. Mol. Cryst. Liq. Cryst, 2007; 468(1): 265-274.
https://doi.org/10.1080/15421400701230105

25. Prylutskyy Yu. I., Petrenko V. I., Ivankov O. I. et al. On the origin of C60 fullerene solubility in aqueous solution. Langmuir, 2014; 30(14): 3967-3970.
https://doi.org/10.1021/la404976k
PMid:24660846

26. Ranganathan P., Jayakumar C., Manicassamy S., Ramesh G. CXCR2 knockout mice are protected against DSS-colitis-induced acute kidney injury and inflammation. Am. J. Physiol. Renal. Physiol, 2013; 305: F1422-F1427.
https://doi.org/10.1152/ajprenal.00319.2013
PMid:23986515 PMCid:PMC3840251

27. Ritter U., Prylutskyy Yu. I., Evstigneev M. P. et al. Structural features of highly stable reproducible C60 fullerene aqueous colloid solution probed by various techniques. Fullerenes, Nanotubes, Carbon Nanostruct, 2015; 23(6): 530-534.
https://doi.org/10.1080/1536383X.2013.870900

28. Sehirli А., Tathdede E., Yaksel M. et al. Protective effects of alfa-lipoic acid against oxidative injury in TNBS-induced colitis. Erciyes Medical Journal, 2009; 31(1): 15-26.

29. Sergijenko V.I., Bondareva I.B. Mathematical statistics in сlinical trials. Moscow: GEOTAR Medicine, 2006. 304 p. (In Russian)

30. Sumner S.C.J., Snyder R.W., Wingard C. et al. Distribution and biomarkers of carbon-14-labeled fullerene C60 ([14C(U)]C60) in female rats and mice for up to 30 days after intravenous exposure. J. Appl. Toxicol, 2015; 35: 1452-1464.
https://doi.org/10.1002/jat.3110
PMid:25727383 PMCid:PMC4943219

31. Takahashi M., Kato H., Doi Y. et. al. Sub-acute oral toxicity study with fullerene C60 in rats. J. Toxicol. Sci, 2012; 37(2): 353-361.
https://doi.org/10.1126/science.1210362
PMid:22267814

32. Tolkachov M., Sokolova V., Korolovych V. et al. Study of biocompatibility effect of nanocarbon particles on various cell types in vitro. Mat-wiss. u. Werkstofftech, 2016; 47(2-3): 216-221.
https://doi.org/10.1002/mawe.201600486

33. Vezza T., Rodríguez-Nogales A., Algieri F. et al. Flavonoids in Inflammatory Bowel Disease: A Review. Nutrients, 2016; 8(4): 211.
https://doi.org/10.3390/nu8040211
PMid:27070642 PMCid:PMC4848680


Refbacks

  • There are currently no refbacks.


Copyright (c) 2017 Studia biologica