On old and new classes of feebly compact  spaces

Oleg Gutik, Oleksandr Ravsky

Анотація


We introduce three new classes of countably pracompact spaces, consider their basic properties and relations with another compact-like spaces.

Повний текст:

PDF (English)

Посилання


A. V. Arkhangel'skii, Topological function spaces, Mathematics and its Applications (Soviet Series), Vol. 78. Kluwer Academic Publishers Group, Dordrecht, 1992.

A. V. Arkhangel'skij, Compactness, General topology II. Encycl. Math. Sci. 50 (1996), 1-117.

A. V. Arkhangel'skii and H. M. M. Genedi, Properties of placement type: relative strong pseudocompactness, Topology and its applications, Proc. Int. Topology Conf. (Baku, October 3?8, 1987), Tr. Mat. Inst. Steklova 193 (1992), 28-30 (Russian); English version: Proc.

Steklov Inst. Math. 193 (1993), 25-27.

G. Artico, U. Marconi, J. Pelant, L. Rotter, and M. Tkachenko, Selections and suborderability, Fund. Math. 175 (2002), 1-33.

D. Baboolal, J. Backhouse and R. G. Ori, On weaker forms of compactness, Lindelofness and countable compactness, Int. J. Math. Math. Sci. 13:1 (1990), 55-60.

T. Banakh and L. Zdomskyy, The topological structure of (homogeneous) spaces and groups with countable cs*-network, Appl. Gen. Top. 5 (2004), no. 1, 25-48.

D. N. Dikranjan, Zero-dimensionality of some pseudocompact groups, Proc. Amer. Math. Soc. 120 (1994), no. 4, 1299-1308.

A. Dorantes-Aldama and D. Shakhmatov, Selective sequential pseudocompactness, Topology Appl. 222 (2017), 53-69.

E. K. van Douwen, G. M. Reed, A. W. Roscoe, and I. J. Tree, Star covering properties, Top. Appl. 39 (1991), no. 1, 71?103.

A. Dow, J. R. Porter, R. M. Stephenson, Jr., and R. G. Woods, Spaces whose pseudocompact subspaces are closed subsets, Appl. Gen. Topol. 5 (2004), no. 2, 243-264.

R. Engelking, General topology, 2nd ed., Heldermann, Berlin, 1989.

S. Garcia-Ferreira and Y. F. Ortiz-Castillo, Strong pseudocompact properties, Comment. Math. Univ. Carol. 55 (2014), no. 1, 101-109.

S. Garcia-Ferreira and A. H. Tomita, A pseudocompact group which is not strongly pseudocompact, Topology Appl. 192 (2015), 138?144.

O. Gutik and K. Pavlyk, On pseudocompact topological Brandt λ0-extensions of semitopological monoids, Top. Algebra Appl. 1 (2013), 60?79.

O. Gutik and O. Sobol, On feebly compact semitopological semilattice exp n λ, arXiv: 1804.08239, 2018, preprint.

P. Lipparini, A very general covering property, Commentat. Math. Univ. Carol. 53 (2012), no. 2, 281-306.

P. Lipparini, The equivalence of two definitions of sequential pseudocompactness, Appl. Gen. Topol. 17 (2016), no. 1, 1-5. (long version arXiv:1201.4832)

J. A. Martinez-Cadena and R. G. Wilson, Maximal densely countably compact topologies, Acta Math. Hungar. 151 (2017), no. 2, 259-270.

M. Matveev, A survey on star covering properties, 1998, preprint (available at http://at.yorku.ca/v/a/a/a/19.htm).

A. Ravsky, Pseudocompact paratopological groups, arXiv:1003.5343v5, 2003, preprint.

E. A. Reznichenko, Embedding into ?rst-countable pseudocompact spaces, unpublished manuscript.

R. M. Stephenson, Jr, Initially κ-compact and related compact spaces, in K. Kunen, J. E. Vaughan (eds.), Handbook of Set-Theoretic Topology, Elsevier, 1984, P. 603-632.

J. E. Vaughan, Countably compact and sequentially compact spaces, in K. Kunen, J. E. Vaughan (eds.), Handbook of Set-Theoretic Topology, Elsevier, 1984, P. 569-602.




DOI: http://dx.doi.org/10.30970/vmm.2018.85.048-059

Посилання

  • Поки немає зовнішніх посилань.